Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(1): 7-17, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38148034

ABSTRACT

In all-atom (AA) molecular dynamics (MD) simulations, the rugged energy profile of the force field makes it challenging to reproduce spontaneous structural changes in biomolecules within a reasonable calculation time. Existing coarse-grained (CG) models, in which the energy profile is set to a global minimum around the initial structure, are unsuitable to explore the structural dynamics between metastable states far away from the initial structure without any bias. In this study, we developed a new hybrid potential composed of an artificial intelligence (AI) potential and minimal CG potential related to the statistical bond length and excluded volume interactions to accelerate the transition dynamics while maintaining the protein character. The AI potential is trained by energy matching using a diverse structural ensemble sampled via multicanonical (Mc) MD simulation and the corresponding AA force field energy, profile of which is smoothed by energy minimization. By applying the new methodology to chignolin and TrpCage, we showed that the AI potential can predict the AA energy with significantly high accuracy, as indicated by a correlation coefficient (R-value) between the true and predicted energies exceeding 0.89. In addition, we successfully demonstrated that CGMD simulation based on the smoothed hybrid potential can significantly enhance the transition dynamics between various metastable states while preserving protein properties compared to those obtained with conventional CGMD and AAMD.

2.
Pharmaceutics ; 15(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37513994

ABSTRACT

Antisense oligonucleotide (ASO)-mediated exon skipping has become a valuable tool for investigating gene function and developing gene therapy. Machine-learning-based computational methods, such as eSkip-Finder, have been developed to predict the efficacy of ASOs via exon skipping. However, these methods are computationally demanding, and the accuracy of predictions remains suboptimal. In this study, we propose a new approach to reduce the computational burden and improve the prediction performance by using feature selection within machine-learning algorithms and ensemble-learning techniques. We evaluated our approach using a dataset of experimentally validated exon-skipping events, dividing it into training and testing sets. Our results demonstrate that using a three-way-voting approach with random forest, gradient boosting, and XGBoost can significantly reduce the computation time to under ten seconds while improving prediction performance, as measured by R2 for both 2'-O-methyl nucleotides (2OMe) and phosphorodiamidate morpholino oligomers (PMOs). Additionally, the feature importance ranking derived from our approach is in good agreement with previously published results. Our findings suggest that our approach has the potential to enhance the accuracy and efficiency of predicting ASO efficacy via exon skipping. It could also facilitate the development of novel therapeutic strategies. This study could contribute to the ongoing efforts to improve ASO design and optimize gene therapy approaches.

3.
Methods Mol Biol ; 2552: 323-331, 2023.
Article in English | MEDLINE | ID: mdl-36346601

ABSTRACT

Structure-based site-directed affinity maturation of antibodies can be expanded by multiple-point mutations to obtain various mutants. However, selecting the appropriate number of promising mutants for experimental evaluation from the vast number of combinations of multiple-point mutations is challenging. In this report, we describe how to narrow candidate mutants using the so-called weak interaction analysis such as CH-π and CH-O in addition to widely recognized interactions such as hydrogen bonds.


Subject(s)
Antibodies , Point Mutation , Antibodies/genetics , Hydrogen Bonding , Antibody Affinity
5.
Nucleic Acids Res ; 49(W1): W193-W198, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34104972

ABSTRACT

Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number.


Subject(s)
Databases, Nucleic Acid , Exons , Machine Learning , Oligonucleotides, Antisense/chemistry , Software , Internet , Introns , RNA Splicing , Sequence Analysis
6.
Sci Rep ; 10(1): 17590, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067496

ABSTRACT

The generation of a wide range of candidate antibodies is important for the successful development of drugs that simultaneously satisfy multiple requirements. To find cooperative mutations and increase the diversity of mutants, an in silico double-point mutation approach, in which 3D models of all possible double-point mutant/antigen complexes are constructed and evaluated using interaction analysis, was developed. Starting from an antibody with very high affinity, four double-point mutants were designed in silico. Two of the double-point mutants exhibited improved affinity or affinity comparable to that of the starting antibody. The successful identification of two active double-point mutants showed that a cooperative mutation could be found by utilizing information regarding the interactions. The individual single-point mutants of the two active double-point mutants showed decreased affinity or no expression. These results suggested that the two active double-point mutants cannot be obtained through the usual approach i.e. a combination of improved single-point mutants. In addition, a triple-point mutant, which combines the distantly located active double-point mutation and an active single-point mutation collaterally obtained in the process of the double-point mutation strategy, was designed. The triple-point mutant showed improved affinity. This finding suggested that the effects of distantly located mutations are independent and additive. The double-point mutation approach using the interaction analysis of 3D structures expands the design repertoire for mutants, and hopefully paves a way for the identification of cooperative multiple-point mutations.


Subject(s)
Thromboplastin/genetics , Thromboplastin/immunology , Antibodies/immunology , Antigens/immunology , Models, Molecular , Mutation/genetics , Point Mutation/genetics , Thermodynamics , Thromboplastin/physiology
7.
J Chem Inf Model ; 60(6): 2803-2818, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32469517

ABSTRACT

Biomolecular imaging using X-ray free-electron lasers (XFELs) has been successfully applied to serial femtosecond crystallography. However, the application of single-particle analysis for structure determination using XFELs with 100 nm or smaller biomolecules has two practical problems: the incomplete diffraction data sets for reconstructing 3D assembled structures and the heterogeneous conformational states of samples. A new diffraction template matching method is thus presented here to retrieve a plausible 3D structural model based on single noisy target diffraction patterns, assuming candidate structures. Two concepts are introduced here: prompt candidate diffraction, generated by enhanced sampled coarse-grain (CG) candidate structures, and efficient molecular orientation searching for matching based on Bayesian optimization. A CG model-based diffraction-matching protocol is proposed that achieves a 100-fold speed increase compared to exhaustive diffraction matching using an all-atom model. The conditions that enable multiconformational analysis were also investigated by simulated diffraction data for various conformational states of chromatin and ribosomes. The proposed method can enable multiconformational analysis, with a structural resolution of at least 20 Å for 270-800 Å flexible biomolecules, in experimental single-particle structure analyses that employ XFELs.


Subject(s)
Lasers , Single Molecule Imaging , Bayes Theorem , Crystallography , Molecular Conformation , X-Ray Diffraction
8.
Sci Rep ; 10(1): 2161, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034220

ABSTRACT

While molecular-targeted drugs have demonstrated strong therapeutic efficacy against diverse diseases such as cancer and infection, the appearance of drug resistance associated with genetic variations in individual patients or pathogens has severely limited their clinical efficacy. Therefore, precision medicine approaches based on the personal genomic background provide promising strategies to enhance the effectiveness of molecular-targeted therapies. However, identifying drug resistance mutations in individuals by combining DNA sequencing and in vitro analyses is generally time consuming and costly. In contrast, in silico computation of protein-drug binding free energies allows for the rapid prediction of drug sensitivity changes associated with specific genetic mutations. Although conventional alchemical free energy computation methods have been used to quantify mutation-induced drug sensitivity changes in some protein targets, these methods are often adversely affected by free energy convergence. In this paper, we demonstrate significant improvements in prediction performance and free energy convergence by employing an alchemical mutation protocol, MutationFEP, which directly estimates binding free energy differences associated with protein mutations in three types of a protein and drug system. The superior performance of MutationFEP appears to be attributable to its more-moderate perturbation scheme. Therefore, this study provides a deeper level of insight into computer-assisted precision medicine.


Subject(s)
Drug Resistance , Molecular Docking Simulation/methods , Mutation , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/chemistry , Aldehyde Reductase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/chemistry , Anaplastic Lymphoma Kinase/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation/standards , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/genetics , Sensitivity and Specificity
9.
ACS Chem Neurosci ; 11(3): 385-394, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31899612

ABSTRACT

Neurotoxicity caused by nonfibrillar amyloid ß (Aß) oligomers in the brain is suggested to be associated with the onset of Alzheimer's disease (AD). Elucidating the structural features of Aß oligomers is critical for promoting drug discovery research for AD. One of the Aß oligomers, known as Aß*56, is a dodecamer that impairs memory when injected into healthy rats, suggesting that Aß*56 may contribute to cognitive deficits in AD patients. Another dodecamer structure, formed by 20-residue peptide segments derived from the Aß peptide (Aß17-36), has been revealed by X-ray crystallography. The structure of the Aß17-36 dodecamer is composed of trimer units and shows the oligomer antibody A11 reactivity, which are characteristic of Aß*56, indicating that Aß*56 and the Aß17-36 dodecamer share a similar structure. However, the structure of the C-terminal regions (Aß37-42) remains unclear. The C-terminal region, which is abundant in hydrophobic residues, is thought to play a key role in stabilizing the oligomer structure by forming a hydrophobic core. In this study, we employed dissipative particle dynamics, a coarse-grained simulation method with soft core potentials, utilizing the crystal structure information to unravel Aß dodecamer structures with C-terminal regions. The simulation results were validated by the reported experimental data. Hence, an analysis of the simulation results can provide structural insights into Aß oligomers. Our simulations revealed the stabilization mechanism of the dodecamer structure at the molecular level. We showed that C-terminal regions spontaneously form a hydrophobic core in the central cavity, contributing to stabilizing the dodecamer structure. Furthermore, four consecutive hydrophobic residues in the C-terminal region (i.e., Val39-Ala42) are important for core formation.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Protein Multimerization/physiology , Crystallography, X-Ray/methods , Drug Discovery/methods , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation
10.
Sci Rep ; 9(1): 19585, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31863054

ABSTRACT

Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified.

11.
J Comput Chem ; 40(29): 2577-2585, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31343749

ABSTRACT

We propose a novel force-field-parametrization procedure that fits the parameters of potential functions in a manner that the pair distribution function (DF) of molecules derived from candidate parameters can reproduce the given target DF. Conventionally, approaches to minimize the difference between the candidate and target DFs employ radial DFs (RDF). RDF itself has been reported to be insufficient for uniquely identifying the parameters of a molecule. To overcome the weakness, we introduce energy DF (EDF) as a target DF, which describes the distribution of the pairwise energy of molecules. We found that the EDF responds more sensitively to a small perturbation in the pairwise potential parameters and provides better fitting accuracy compared to that of RDF. These findings provide valuable insights into a wide range of coarse graining methods, which determine parameters using information obtained from a higher-level calculation than that of the developed force field. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.

12.
Sci Rep ; 7(1): 12038, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931921

ABSTRACT

We propose a new iterative screening contest method to identify target protein inhibitors. After conducting a compound screening contest in 2014, we report results acquired from a contest held in 2015 in this study. Our aims were to identify target enzyme inhibitors and to benchmark a variety of computer-aided drug discovery methods under identical experimental conditions. In both contests, we employed the tyrosine-protein kinase Yes as an example target protein. Participating groups virtually screened possible inhibitors from a library containing 2.4 million compounds. Compounds were ranked based on functional scores obtained using their respective methods, and the top 181 compounds from each group were selected. Our results from the 2015 contest show an improved hit rate when compared to results from the 2014 contest. In addition, we have successfully identified a statistically-warranted method for identifying target inhibitors. Quantitative analysis of the most successful method gave additional insights into important characteristics of the method used.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-yes/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Machine Learning , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-yes/metabolism , Reproducibility of Results , Structure-Activity Relationship
13.
J Phys Chem B ; 120(31): 7714-23, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27434200

ABSTRACT

Cosolvents, such as urea, affect protein folding and binding, and the solubility of solutes. The modeling of cosolvents has been facilitated significantly by the rigorous Kirkwood-Buff (KB) theory of solutions, which can describe structural thermodynamics over the entire composition range of aqueous cosolvent mixtures based only on the solution density and the KB integrals (KBIs), i.e., the net excess radial distribution functions from the bulk. Using KBIs to describe solution thermodynamics has given rise to a clear guideline that an accurate prediction of KBIs is equivalent to accurate modeling of cosolvents. Taking urea as an example, here we demonstrate that an improvement in the prediction of KBIs comes from an improved reproduction of high-level quantum chemical (QC) electrostatic potential and molecular pairwise interaction energies. This rational approach to the improvement of the KBI prediction stems from a comparison of existing force fields, AMOEBA, and the generalized AMBER force field, as well as the further optimization of the former to enable better agreement with QC interaction energies. Such improvements would pave the way toward a rational and systematic determination of the transferable force field parameters for a number of important small molecule cosolvents.

14.
Sci Rep ; 5: 17209, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26607293

ABSTRACT

A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.


Subject(s)
Drug Evaluation, Preclinical , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-yes/antagonists & inhibitors , Humans , Principal Component Analysis , Proto-Oncogene Proteins c-yes/chemistry , Reproducibility of Results , src-Family Kinases/metabolism
15.
J Phys Chem B ; 118(44): 12612-20, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25302667

ABSTRACT

ATP binding cassette (ABC) proteins belong to a superfamily of active transporters. Recent experimental and computational studies have shown that binding of ATP to the nucleotide binding domains (NBDs) of ABC proteins drives the dimerization of NBDs, which, in turn, causes large conformational changes within the transmembrane domains (TMDs). To elucidate the active substrate transport mechanism of ABC proteins, it is first necessary to understand how the NBD dimerization is driven by ATP binding. In this study, we selected MalKs (NBDs of a maltose transporter) as a representative NBD and calculated the free-energy change upon dimerization using molecular mechanics calculations combined with a statistical thermodynamic theory of liquids, as well as a method to calculate the translational, rotational, and vibrational entropy change. This combined method is applied to a large number of snapshot structures obtained from molecular dynamics simulations containing explicit water molecules. The results suggest that the NBD dimerization proceeds with a large gain of water entropy when ATP molecules bind to the NBDs. The energetic gain arising from direct NBD-NBD interactions is canceled by the dehydration penalty and the configurational-entropy loss. ATP hydrolysis induces a loss of the shape complementarity between the NBDs, which leads to the dissociation of the dimer, due to a decrease in the water-entropy gain and an increase in the configurational-entropy loss. This interpretation of the NBD dimerization mechanism in concert with ATP, especially focused on the water-mediated entropy force, is potentially applicable to a wide variety of the ABC transporters.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/chemistry , Escherichia coli Proteins/chemistry , Molecular Dynamics Simulation , Water/chemistry , Binding Sites , Dimerization , Entropy , Escherichia coli/chemistry , Escherichia coli/enzymology , Hydrolysis , Protein Binding , Protein Conformation , Protein Structure, Tertiary
16.
J Comput Chem ; 34(23): 1969-74, 2013 Sep 05.
Article in English | MEDLINE | ID: mdl-23775361

ABSTRACT

We have developed a versatile method for calculating solvation thermodynamic quantities for molecules, starting from their atomic coordinates. The contribution of each atom to the thermodynamic quantities is estimated as a linear combination of four fundamental geometric measures of the atomic species, which are defined by Hadwiger's theorem, and the coefficients reflecting their solvation properties. This treatment enables us to calculate the solvation free energy with high accuracy despite of the limited computational load. The method can readily be applied to macromolecules in an all-atom molecular model, allowing the stability of these molecules' structures in solution to be evaluated.


Subject(s)
Proteins/chemistry , Molecular Dynamics Simulation , Octanols/chemistry , Protein Stability , Solvents/chemistry , Thermodynamics , Water/chemistry
17.
J Phys Chem B ; 117(1): 83-93, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23214920

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.


Subject(s)
Adenosine Triphosphate/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Molecular Dynamics Simulation , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Dimerization , Models, Molecular
18.
J Comput Chem ; 33(5): 550-60, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22162031

ABSTRACT

The binding free energy for FK506-binding protein-ligand systems is evaluated as a sum of two entropic components, the water-entropy gain, and the configurational-entropy loss for the protein and ligand molecules upon the binding. The two entropic components are calculated using morphometric thermodynamics combined with a statistical-mechanical theory for molecular liquids and the normal mode analysis, respectively. We find that there is an excellent correlation between the calculated and experimental values of the binding free energy. This result is compared with those of several other binding-free energy calculation methods, including MM-PB/SA. The binding can well be elucidated by competition of the two entropic components. Upon the protein-ligand binding, the total volume available to the translational displacement of the coexisting water molecules increases, leading to an increase in the number of accessible configurations of the water. The water-entropy gain, by which the binding is driven, originates primarily from this effect. This study sheds new light on the theoretical prediction of the protein-ligand binding free energy.


Subject(s)
Entropy , Proteins/chemistry , Ligands , Molecular Dynamics Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL