Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Nat Med ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312956

ABSTRACT

The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls. Cognitive deficits were global and associated with elevated brain injury markers, and reduced anterior cingulate cortex volume one year after COVID-19. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.

2.
Nucleic Acids Res ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087558

ABSTRACT

In mammals, the leucine-rich pentatricopeptide repeat protein (LRPPRC) and the stem-loop interacting RNA-binding protein (SLIRP) form a complex in the mitochondrial matrix that is required throughout the life cycle of most mitochondrial mRNAs. Although pathogenic mutations in the LRPPRC and SLIRP genes cause devastating human mitochondrial diseases, the in vivo function of the corresponding proteins is incompletely understood. We show here that loss of SLIRP in mice causes a decrease of complex I levels whereas other OXPHOS complexes are unaffected. We generated knock-in mice to study the in vivo interdependency of SLIRP and LRPPRC by mutating specific amino acids necessary for protein complex formation. When protein complex formation is disrupted, LRPPRC is partially degraded and SLIRP disappears. Livers from Lrpprc knock-in mice had impaired mitochondrial translation except for a marked increase in the synthesis of ATP8. Furthermore, the introduction of a heteroplasmic pathogenic mtDNA mutation (m.C5024T of the tRNAAla gene) into Slirp knockout mice causes an additive effect on mitochondrial translation leading to embryonic lethality and reduced growth of mouse embryonic fibroblasts. To summarize, we report that the LRPPRC/SLIRP protein complex is critical for maintaining normal complex I levels and that it also coordinates mitochondrial translation in a tissue-specific manner.

3.
Article in English | MEDLINE | ID: mdl-39095335

ABSTRACT

Neuromuscular features are common in mitochondrial DNA (mtDNA) disorders. The genetic architecture of mtDNA disorders in diverse populations is poorly understood. We analysed mtDNA variants from whole-exome sequencing data in neuromuscular patients from South Africa, Brazil, India, Turkey and Zambia. In 998 individuals, there were two definite diagnoses, two possible diagnoses and eight secondary findings. Surprisingly, common pathogenic mtDNA variants found in people of European ancestry were very rare. Whole-exome or -genome sequencing from undiagnosed patients with neuromuscular symptoms should be re-analysed for mtDNA variants, but the landscape of pathogenic mtDNA variants differs around the world.

5.
BMJ Neurol Open ; 6(1): e000650, 2024.
Article in English | MEDLINE | ID: mdl-38860231

ABSTRACT

Background: We aimed to determine whether sodium valproate (VPA) should be contraindicated in all mitochondrial diseases, due to known VPA-induced severe hepatotoxicity in some mitochondrial diseases. Methods: We systematically reviewed the published literature for mitochondrial DNA (mtDNA) and common nuclear genotypes of mitochondrial diseases using PubMed, Ovid Embase, Ovid Medline and MitoPhen databases. We extracted patient-level data from peer-reviewed articles, published until July 2022, using the Human Phenotype Ontology to manually code clinical presentations for 156 patients with genetic diagnoses from 90 publications. Results: There were no fatal adverse drug reactions (ADRs) in the mtDNA disease group (35 patients), and only 1 out of 54 patients with a non-POLG mitochondrial disease developed acute liver failure. There were fatal outcomes in 53/102 (52%) POLG VPA-exposed patients who all harboured recessive mutations. Conclusions: Our findings confirm the high risk of severe ADRs in any patient with recessive POLG variants irrespective of the phenotype, and therefore recommend that VPA is contraindicated in this group. However, there was limited evidence of toxicity to support a similar recommendation in other genotypes of mitochondrial diseases.

6.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38851188

ABSTRACT

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondrial Dynamics , Mitochondrial Membranes , Mitochondrial Proteins , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Animals , HeLa Cells , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Autophagy
7.
Hum Mol Genet ; 33(R1): R3-R11, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38779777

ABSTRACT

Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Mutation , Organ Specificity , Humans , DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Diseases/diagnosis , Organ Specificity/genetics , Mitochondria/genetics , Animals
8.
Nat Med ; 30(6): 1739-1748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745010

ABSTRACT

A leading explanation for translational failure in neurodegenerative disease is that new drugs are evaluated late in the disease course when clinical features have become irreversible. Here, to address this gap, we cognitively profiled 21,051 people aged 17-85 years as part of the Genes and Cognition cohort within the National Institute for Health and Care Research BioResource across England. We describe the cohort, present cognitive trajectories and show the potential utility. Surprisingly, when studied at scale, the APOE genotype had negligible impact on cognitive performance. Different cognitive domains had distinct genetic architectures, with one indicating brain region-specific activation of microglia and another with glycogen metabolism. Thus, the molecular and cellular mechanisms underpinning cognition are distinct from dementia risk loci, presenting different targets to slow down age-related cognitive decline. Participants can now be recalled stratified by genotype and cognitive phenotype for natural history and interventional studies of neurodegenerative and other disorders.


Subject(s)
Cognition , Genotype , Humans , Aged , Middle Aged , Aged, 80 and over , Adolescent , Adult , Young Adult , Female , Cohort Studies , Male , Apolipoproteins E/genetics , Aging/genetics , England
9.
J Neuromuscul Dis ; 11(4): 767-775, 2024.
Article in English | MEDLINE | ID: mdl-38759022

ABSTRACT

Background: The genetic diagnosis of mitochondrial disorders is complicated by its genetic and phenotypic complexity. Next generation sequencing techniques have much improved the diagnostic yield for these conditions. A cohort of individuals with multiple respiratory chain deficiencies, reported in the literature 10 years ago, had a diagnostic rate of 60% by whole exome sequencing (WES) but 40% remained undiagnosed. Objective: We aimed to identify a genetic diagnosis by reanalysis of the WES data for the undiagnosed arm of this 10-year-old cohort of patients with suspected mitochondrial disorders. Methods: The WES data was transferred and processed by the RD-Connect Genome-Phenome Analysis Platform (GPAP) using their standardized pipeline. Variant prioritisation was carried out on the RD-Connect GPAP. Results: Singleton WES data from 14 individuals was reanalysed. We identified a possible or likely genetic diagnosis in 8 patients (8/14, 57%). The variants identified were in a combination of mitochondrial DNA (n = 1, MT-TN), nuclear encoded mitochondrial genes (n = 2, PDHA1, and SUCLA2) and nuclear genes associated with nonmitochondrial disorders (n = 5, PNPLA2, CDC40, NBAS and SLC7A7). Variants in both the NBAS and CDC40 genes were established as disease causing after the original cohort was published. We increased the diagnostic yield for the original cohort by 15% without generating any further genomic data. Conclusions: In the era of multiomics we highlight that reanalysis of existing WES data is a valid tool for generating additional diagnosis in patients with suspected mitochondrial disease, particularly when more time has passed to allow for new bioinformatic pipelines to emerge, for the development of new tools in variant interpretation aiding in reclassification of variants and the expansion of scientific knowledge on additional genes.


Subject(s)
Exome Sequencing , Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/diagnosis , Exome Sequencing/methods , Child , Male , Female , Cohort Studies , DNA, Mitochondrial/genetics
10.
Ann Clin Transl Neurol ; 11(5): 1359-1364, 2024 May.
Article in English | MEDLINE | ID: mdl-38561955

ABSTRACT

Neuroferritinopathy is a disorder of neurodegeneration with brain iron accumulation that has no proven disease-modifying treatments. Clinical trials require biomarkers of iron deposition. We examined brain iron accumulation in one presymptomatic FTL mutation carrier, two individuals with neuroferritinopathy and one healthy control using ultra-high-field 7T MRI. There was increased magnetic susceptibility, suggestive of iron deposition, in superficial and deep gray matter in both presymptomatic and symptomatic neuroferritinopathy. Cavitation of the putamen and globus pallidus increased with disease stage and at follow up. The widespread brain iron deposition in presymptomatic and early disease provides an opportunity for monitoring disease-modifying intervention.


Subject(s)
Iron Metabolism Disorders , Iron , Magnetic Resonance Imaging , Neuroaxonal Dystrophies , Humans , Neuroaxonal Dystrophies/diagnostic imaging , Neuroaxonal Dystrophies/genetics , Neuroaxonal Dystrophies/metabolism , Neuroaxonal Dystrophies/pathology , Iron Metabolism Disorders/diagnostic imaging , Iron Metabolism Disorders/metabolism , Iron Metabolism Disorders/genetics , Iron/metabolism , Adult , Male , Female , Brain/diagnostic imaging , Brain/metabolism , Middle Aged , Apoferritins/metabolism , Apoferritins/genetics
12.
Brain ; 147(9): 3189-3203, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38574200

ABSTRACT

Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.


Subject(s)
Corpus Striatum , Dopaminergic Neurons , Substantia Nigra , Animals , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Mice , Corpus Striatum/pathology , Corpus Striatum/metabolism , Mice, Transgenic , DNA, Mitochondrial/genetics , Motor Activity/physiology , Mutation , DNA Helicases/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Dopamine/metabolism
13.
Cell Metab ; 36(1): 5-7, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38171338

ABSTRACT

There is emerging evidence that mitochondria can move between cells, particularly from immune cells into cancers. Recent work from Zhang et al. in Cancer Cell employs single-cell RNA- and mitochondrial DNA-sequencing in co-culture experiments and patient tumor samples to detect mitochondrial transfer. However, the mechanisms, scale, and implications remain uncertain.


Subject(s)
Mitochondria , Neoplasms , Humans , Mitochondria/genetics , DNA, Mitochondrial/genetics , Coculture Techniques
14.
Neuropathology ; 44(2): 109-114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37438874

ABSTRACT

We present a comprehensive characterization of clinical, neuropathological, and multisystem features of a man with genetically confirmed McLeod neuroacanthocytosis syndrome, including video and autopsy findings. A 61-year-old man presented with a movement disorder and behavioral change. Examination showed dystonic choreiform movements in all four limbs, reduced deep-tendon reflexes, and wide-based gait. He had oromandibular dyskinesia causing severe dysphagia. Elevated serum creatinine kinase (CK) was first noted in his thirties, but investigations, including muscle biopsy at that time, were inconclusive. Brain magnetic resonance imaging showed white matter volume loss, atrophic basal ganglia, and chronic small vessel ischemia. Despite raised CK, electromyography did not show myopathic changes. Exome gene panel testing was negative, but targeted genetic analysis revealed a hemizygous pathogenic variant in the XK gene c.895C > T p.(Gln299Ter), consistent with a diagnosis of McLeod syndrome. The patient died of sepsis, and autopsy showed astrocytic gliosis and atrophy of the basal ganglia, diffuse iron deposition in the putamen, and mild Alzheimer's pathology. Muscle pathology was indicative of mild chronic neurogenic atrophy without overt myopathic features. He had non-specific cardiomyopathy and splenomegaly. McLeod syndrome is an ultra-rare neurodegenerative disorder caused by X-linked recessive mutations in the XK gene. Diagnosis has management implications since patients are at risk of severe transfusion reactions and cardiac complications. When a clinical diagnosis is suspected, candidate genes should be interrogated rather than solely relying on exome panels.


Subject(s)
Muscular Diseases , Neuroacanthocytosis , Male , Humans , Middle Aged , Neuroacanthocytosis/genetics , Neuroacanthocytosis/diagnosis , Neuroacanthocytosis/pathology , Muscular Diseases/pathology , Basal Ganglia/pathology , Atrophy/pathology
15.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135686

ABSTRACT

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Subject(s)
Brain Injuries , COVID-19 , Humans , Follow-Up Studies , Cytokines , COVID-19/complications , COVID-19 Serotherapy , Autoantibodies , Inflammation Mediators , Biomarkers , Glial Fibrillary Acidic Protein
16.
Front Neurol ; 14: 1292320, 2023.
Article in English | MEDLINE | ID: mdl-38107630

ABSTRACT

Background: Leber Hereditary Optic Neuropathy (LHON) is the most common inherited mitochondrial disease characterized by bilateral, painless, subacute visual loss with a peak age of onset in the second to third decade. Historically, LHON was thought to be exclusively maternally inherited due to mutations in mitochondrial DNA (mtDNA); however, recent studies have identified an autosomal recessive form of LHON (arLHON) caused by point mutations in the nuclear gene, DNAJC30. Case Presentations: In this study, we report the cases of three Eastern European individuals presenting with bilateral painless visual loss, one of whom was also exhibiting motor symptoms. After a several-year-long diagnostic journey, all three patients were found to carry the homozygous c.152A>G (p.Tyr51Cys) mutation in DNAJC30. This has been identified as the most common arLHON pathogenic variant and has been shown to exhibit a significant founder effect amongst Eastern European individuals. Conclusion: This finding adds to the growing cohort of patients with arLHON and demonstrates the importance of DNAJC30 screening in patients with molecularly undiagnosed LHON, particularly in Eastern European individuals. It is of heightened translational significance as patients diagnosed with arLHON exhibit a better prognosis and response to therapeutic treatment with the co-enzyme Q10 analog idebenone.

17.
Hum Mol Genet ; 33(1): 91-101, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37815936

ABSTRACT

Mutations affecting the mitochondrial intermembrane space protein CHCHD10 cause human disease, but it is not known why different amino acid substitutions cause markedly different clinical phenotypes, including amyotrophic lateral sclerosis-frontotemporal dementia, spinal muscular atrophy Jokela-type, isolated autosomal dominant mitochondrial myopathy and cardiomyopathy. CHCHD10 mutations have been associated with deletions of mitochondrial DNA (mtDNA deletions), raising the possibility that these explain the clinical variability. Here, we sequenced mtDNA obtained from hearts, skeletal muscle, livers and spinal cords of WT and Chchd10 G58R or S59L knockin mice to characterise the mtDNA deletion signatures of the two mutant lines. We found that the deletion levels were higher in G58R and S59L mice than in WT mice in some tissues depending on the Chchd10 genotype, and the deletion burden increased with age. Furthermore, we observed that the spinal cord was less prone to the development of mtDNA deletions than the other tissues examined. Finally, in addition to accelerating the rate of naturally occurring deletions, Chchd10 mutations also led to the accumulation of a novel set of deletions characterised by shorter direct repeats flanking the deletion breakpoints. Our results indicate that Chchd10 mutations in mice induce tissue-specific deletions which may also contribute to the clinical phenotype associated with these mutations in humans.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Mice , Animals , Mutation , Mitochondria/metabolism , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
18.
Sci Adv ; 9(43): eadi4038, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37878704

ABSTRACT

Heteroplasmic mitochondrial DNA (mtDNA) mutations are a major cause of inherited disease and contribute to common late-onset human disorders. The late onset and clinical progression of mtDNA-associated disease is thought to be due to changing heteroplasmy levels, but it is not known how and when this occurs. Performing high-throughput single-cell genotyping in two mouse models of human mtDNA disease, we saw unanticipated cell-to-cell differences in mtDNA heteroplasmy levels that emerged prenatally and progressively increased throughout life. Proliferating spleen cells and nondividing brain cells had a similar single-cell heteroplasmy variance, implicating mtDNA or organelle turnover as the major force determining cell heteroplasmy levels. The two different mtDNA mutations segregated at different rates with no evidence of selection, consistent with different rates of random genetic drift in vivo, leading to the accumulation of cells with a very high mutation burden at different rates. This provides an explanation for differences in severity seen in human diseases caused by similar mtDNA mutations.


Subject(s)
DNA, Mitochondrial , Mosaicism , Animals , Mice , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL