Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Pharmacol ; 14: 1328950, 2023.
Article En | MEDLINE | ID: mdl-38273820

Snakebite envenoming results in ∼100,000 deaths per year, with close to four times as many victims left with life-long sequelae. Current antivenom therapies have several limitations including high cost, variable cross-snake species efficacy and a requirement for intravenous administration in a clinical setting. Next-generation snakebite therapies are being widely investigated with the aim to improve cost, efficacy, and safety. In recent years several small molecule drugs have shown considerable promise for snakebite indication, with oral bioavailability particularly promising for community delivery rapidly after a snakebite. However, only two such drugs have entered clinical development for snakebite. To offset the risk of attrition during clinical trials and to better explore the chemical space for small molecule venom toxin inhibitors, here we describe the first high throughput drug screen against snake venom metalloproteinases (SVMPs)-a pathogenic toxin family responsible for causing haemorrhage and coagulopathy. Following validation of a 384-well fluorescent enzymatic assay, we screened a repurposed drug library of 3,547 compounds against five geographically distinct and toxin variable snake venoms. Our drug screen resulted in the identification of 14 compounds with pan-species inhibitory activity. Following secondary potency testing, four SVMP inhibitors were identified with nanomolar EC50s comparable to the previously identified matrix metalloproteinase inhibitor marimastat and superior to the metal chelator dimercaprol, doubling the current global portfolio of SVMP inhibitors. Following analysis of their chemical structure and ADME properties, two hit-to-lead compounds were identified. These clear starting points for the initiation of medicinal chemistry campaigns provide the basis for the first ever designer snakebite specific small molecules.

2.
RSC Adv ; 12(25): 15631-15642, 2022 May 23.
Article En | MEDLINE | ID: mdl-35685699

Bioorthogonal chemistry can facilitate the development of fluorescent probes that can be used to sensitively and specifically detect the presence of biological targets. In this study, such an assay was developed to evaluate the uptake and delivery of antimicrobials into Escherichia coli, building on and extending previous work which utilised more resource intensive LCMS detection. The bacteria were genetically engineered to express streptavidin in the periplasmic or cytoplasmic compartments, which was used to localise a bioorthogonal probe (BCN-biotin). Azido-compounds which are delivered to these compartments react with the localised BCN-biotin-streptavidin in a concentration-dependent manner via a strain-promoted alkyne-azide cycloaddition. The amount of azido-compound taken up by bacteria was determined by quantifying unreacted BCN-biotin-streptavidin via an inverse electron demand Diels-Alder reaction between remaining BCN-biotin and a tetrazine-containing fluorescent dye. Following optimisation and validation, the assay was used to assess uptake of liposome-formulated azide-functionalised luciferin and cefoxitin. The results demonstrated that formulation into cationic liposomes improved the uptake of azide-functionalised compounds into the periplasm of E. coli, providing insight on the uptake mechanism of liposomes in the bacteria. This newly developed bioorthogonal fluorescence plate-reader based assay provides a bioactivity-independent, medium-to-high throughput tool for screening compound uptake/delivery.

3.
J Med Chem ; 64(12): 8161-8178, 2021 06 24.
Article En | MEDLINE | ID: mdl-34120444

Adenosine receptors are attractive therapeutic targets for multiple conditions, including ischemia-reperfusion injury and neuropathic pain. Adenosine receptor drug discovery efforts would be facilitated by the development of appropriate tools to assist in target validation and direct receptor visualization in different native environments. We report the development of the first bifunctional (chemoreactive and clickable) ligands for the adenosine A1 receptor (A1R) and adenosine A3 receptor (A3R) based on an orthosteric antagonist xanthine-based scaffold and on an existing structure-activity relationship. Bifunctional ligands were functional antagonists with nanomolar affinity and irreversible binding at the A1R and A3R. In-depth pharmacological profiling of these bifunctional ligands showed moderate selectivity over A2A and A2B adenosine receptors. Once bound to the receptor, ligands were successfully "clicked" with a cyanine-5 fluorophore containing the complementary "click" partner, enabling receptor detection. These bifunctional ligands are expected to aid in the understanding of A1R and A3R localization and trafficking in native cells and living systems.


Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A3 Receptor Antagonists/pharmacology , Molecular Probes/pharmacology , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A3/metabolism , Xanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A3 Receptor Antagonists/chemical synthesis , Alkynes/chemistry , Animals , Azides/chemistry , CHO Cells , Click Chemistry , Cricetulus , Drug Design , Fluorescent Dyes/chemistry , Humans , Ligands , Molecular Probes/chemical synthesis , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A3/chemistry , Xanthines/chemical synthesis
...