Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
West J Emerg Med ; 25(1): 67-78, 2024 Jan.
Article En | MEDLINE | ID: mdl-38205987

Introduction: Timely diagnosis of patients affected by an emerging infectious disease plays a crucial role in treating patients and avoiding disease spread. In prior research, we developed an approach by using machine learning (ML) algorithms to predict serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection based on clinical features of patients visiting an emergency department (ED) during the early coronavirus 2019 (COVID-19) pandemic. In this study, we aimed to externally validate this approach within a distinct ED population. Methods: To create our training/validation cohort (model development) we collected data retrospectively from suspected COVID-19 patients at a US ED from February 23-May 12, 2020. Another dataset was collected as an external validation (testing) cohort from an ED in another country from May 12-June 15, 2021. Clinical features including patient demographics and triage information were used to train and test the models. The primary outcome was the confirmed diagnosis of COVID-19, defined as a positive reverse transcription polymerase chain reaction test result for SARS-CoV-2. We employed three different ML algorithms, including gradient boosting, random forest, and extra trees classifiers, to construct the predictive model. The predictive performances were evaluated with the area under the receiver operating characteristic curve (AUC) in the testing cohort. Results: In total, 580 and 946 ED patients were included in the training and testing cohorts, respectively. Of them, 98 (16.9%) and 180 (19.0%) were diagnosed with COVID-19. All the constructed ML models showed acceptable discrimination, as indicated by the AUC. Among them, random forest (0.785, 95% confidence interval [CI] 0.747-0.822) performed better than gradient boosting (0.774, 95% CI 0.739-0.811) and extra trees classifier (0.72, 95% CI 0.677-0.762). There was no significant difference between the constructed models. Conclusion: Our study validates the use of ML for predicting COVID-19 in the ED and demonstrates its potential for predicting emerging infectious diseases based on models built by clinical features with temporal and spatial heterogeneity. This approach holds promise for scenarios where effective diagnostic tools for an emerging infectious disease may be lacking in the future.


COVID-19 , Communicable Diseases, Emerging , Humans , Retrospective Studies , COVID-19/diagnosis , SARS-CoV-2 , Emergency Service, Hospital , Machine Learning
2.
Front Cardiovasc Med ; 10: 1192241, 2023.
Article En | MEDLINE | ID: mdl-37808885

Introduction: Sleep disturbance and insufficient sleep have been linked to metabolic syndrome, increasing cardiovascular disease and mortality risk. However, few studies investigate the joint effect of sleep and exercise on metabolic syndrome. We hypothesized that regular exercise can mitigate the exacerbation of metabolic syndrome by sleep insufficiency. Objective: The aim of this study was to investigate whether exercise can attenuate or eliminate the relationship between sleep insufficiency and metabolic syndrome. Method: A total of 6,289 adults (mean age = 33.96 years; women: 74.81%) were included in the study, a cross-sectional study conducted based on the results of employee health screening questionnaires and databases from a large healthcare system in central Taiwan. Participants reported sleep insufficiency or not. Self-reported exercise habits were classified into 3 levels: no exercise, exercise <150 min/week, and exercise ≧150 min/week. Multiple logistic regression and sensitivity analyses were conducted to understand the joint associations of sleep patterns and exercise with metabolic syndrome with exposure variables combining sleep duration/disturbances and PA. Results: Compared with the reference group (sufficient sleep), individuals with sleep insufficiency had a higher risk for metabolic syndrome [adjusted odds ratio (AOR) = 1.40, 95% confidence interval (95% CI): 1.01-1.94, p < 0.05] in females aged 40-64 years, but not in other populations. Sleep insufficiency was not associated with the risk of metabolic syndrome among individuals achieving an exercise level of <150 min/week, and in particular among those achieving ≧150 min/week in all populations in our study. Conclusion: Sleep insufficiency was related to a higher risk of metabolic syndrome in female healthcare staff aged 40-64 years. Being physically active with exercise habits in these individuals, the risk of metabolic syndrome was no longer significant.

3.
West J Emerg Med ; 24(4): 693-702, 2023 Jul 07.
Article En | MEDLINE | ID: mdl-37527373

INTRODUCTION: Healthcare professionals frequently experience work-related fatigue, which may jeopardize their health and put patient safety at risk. In this study, we applied a machine learning (ML) approach based on data collected from a smartwatch to construct prediction models of work-related fatigue for emergency clinicians. METHODS: We conducted this prospective study at the emergency department (ED) of a tertiary teaching hospital from March 10-June 20, 2021, where we recruited physicians, nurses, and nurse practitioners. All participants wore a commercially available smartwatch capable of measuring various physiological data during the experiment. Participants completed the Multidimensional Fatigue Inventory (MFI) web form before and after each of their work shifts. We calculated and labeled the before-and-after-shift score differences between each pair of scores. Using several tree-based algorithms, we constructed the prediction models based on features collected from the smartwatch. Records were split into training/validation and testing sets at a 70:30 ratio, and we evaluated the performances using the area under the curve (AUC) measure of receiver operating characteristic on the test set. RESULTS: In total, 110 participants were included in this study, contributing to a set of 1,542 effective records. Of these records, 85 (5.5%) were labeled as having work-related fatigue when setting the MFI difference between two standard deviations as the threshold. The mean age of the participants was 29.6. Most of the records were collected from nurses (87.7%) and females (77.5%). We selected a union of 31 features to construct the models. For total participants, CatBoost classifier achieved the best performances of AUC (0.838, 95% confidence interval [CI] 0.742-0.918) to identify work-related fatigue. By focusing on a subgroup of nurses <35 years in age, XGBoost classifier obtained excellent performance of AUC (0.928, 95% CI 0.839-0.991) on the test set. CONCLUSION: By using features derived from a smartwatch, we successfully built ML models capable of classifying the risk of work-related fatigue in the ED. By collecting more data to optimize the models, it should be possible to use smartwatch-based ML models in the future to predict work-related fatigue and adopt preventive measures for emergency clinicians.


Emergency Service, Hospital , Machine Learning , Female , Humans , Prospective Studies , Forecasting , Delivery of Health Care
4.
Intern Emerg Med ; 18(2): 595-605, 2023 03.
Article En | MEDLINE | ID: mdl-36335518

In-hospital cardiac arrest (IHCA) in the emergency department (ED) is not uncommon but often fatal. Using the machine learning (ML) approach, we sought to predict ED-based IHCA (EDCA) in patients presenting to the ED based on triage data. We retrieved 733,398 ED records from a tertiary teaching hospital over a 7 year period (Jan. 1, 2009-Dec. 31, 2015). We included only adult patients (≥ 18 y) and excluded cases presenting as out-of-hospital cardiac arrest. Primary outcome (EDCA) was identified via a resuscitation code. Patient demographics, triage data, and structured chief complaints (CCs), were extracted. Stratified split was used to divide the dataset into the training and testing cohort at a 3-to-1 ratio. Three supervised ML models were trained and performances were evaluated and compared to the National Early Warning Score 2 (NEWS2) and logistic regression (LR) model by the area under the receiver operating characteristic curve (AUC). We included 316,465 adult ED records for analysis. Of them, 636 (0.2%) developed EDCA. Of the constructed ML models, Random Forest outperformed the others with the best AUC result (0.931, 95% CI 0.911-0.949), followed by Gradient Boosting (0.930, 95% CI 0.909-0.948) and Extra Trees classifier (0.915, 95% CI 0.892-0.936). Although the differences between each of ML models and LR (AUC: 0.905, 95% CI 0.882-0.926) were not significant, all constructed ML models performed significantly better than using the NEWS2 scoring system (AUC 0.678, 95% CI 0.635-0.722). Our ML models showed excellent discriminatory performance to identify EDCA based only on the triage information. This ML approach has the potential to reduce unexpected resuscitation events if successfully implemented in the ED information system.


Emergency Service, Hospital , Out-of-Hospital Cardiac Arrest , Adult , Humans , Machine Learning , Logistic Models , Triage , Out-of-Hospital Cardiac Arrest/therapy , Hospitals
5.
Intern Emerg Med ; 17(3): 805-814, 2022 04.
Article En | MEDLINE | ID: mdl-34813010

There are only a few models developed for risk-stratifying COVID-19 patients with suspected pneumonia in the emergency department (ED). We aimed to develop and validate a model, the COVID-19 ED pneumonia mortality index (CoV-ED-PMI), for predicting mortality in this population. We retrospectively included adult COVID-19 patients who visited EDs of five study hospitals in Texas and who were diagnosed with suspected pneumonia between March and November 2020. The primary outcome was 1-month mortality after the index ED visit. In the derivation cohort, multivariable logistic regression was used to develop the CoV-ED-PMI model. In the chronologically split validation cohort, the discriminative performance of the CoV-ED-PMI was assessed by the area under the receiver operating characteristic curve (AUC) and compared with other existing models. A total of 1678 adult ED records were included for analysis. Of them, 180 patients sustained 1-month mortality. There were 1174 and 504 patients in the derivation and validation cohorts, respectively. Age, body mass index, chronic kidney disease, congestive heart failure, hepatitis, history of transplant, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and national early warning score were included in the CoV-ED-PMI. The model was validated with good discriminative performance (AUC: 0.83, 95% confidence interval [CI]: 0.79-0.87), which was significantly better than the CURB-65 (AUC: 0.74, 95% CI: 0.69-0.79, p-value: < 0.001). The CoV-ED-PMI had a good predictive performance for 1-month mortality in COVID-19 patients with suspected pneumonia presenting at ED. This free tool is accessible online, and could be useful for clinical decision-making in the ED.


COVID-19 , Pneumonia , Adult , Emergency Service, Hospital , Humans , Pneumonia/diagnosis , ROC Curve , Retrospective Studies , SARS-CoV-2
...