Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
JCI Insight ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889046

ABSTRACT

Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that interleukin 13 (IL-13) activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibits viscoelastic liquid behavior and that mucus secreted by IL-13 activated HAECs exhibits solid-like behavior caused by mucin cross-linking. In addition, IL-13 activated HAECs show increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that is prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), is increased in IL-13 activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings is increased in asthma patients with high airway mucus plug scores. Together, our results show that IL-13 activated HAECs autonomously generate pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.

2.
N Engl J Med ; 390(24): 2274-2283, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38767614

ABSTRACT

BACKGROUND: Dupilumab, a fully human monoclonal antibody that blocks the shared receptor component for interleukin-4 and interleukin-13, key and central drivers of type 2 inflammation, has shown efficacy and safety in a phase 3 trial involving patients with chronic obstructive pulmonary disease (COPD) and type 2 inflammation and an elevated risk of exacerbation. Whether the findings would be confirmed in a second phase 3 trial was unclear. METHODS: In a phase 3, double-blind, randomized trial, we assigned patients with COPD who had a blood eosinophil count of 300 cells per microliter or higher to receive subcutaneous dupilumab (300 mg) or placebo every 2 weeks. The primary end point was the annualized rate of moderate or severe exacerbations. Key secondary end points, analyzed in a hierarchical manner to adjust for multiplicity, included the changes from baseline in the prebronchodilator forced expiratory volume in 1 second (FEV1) at weeks 12 and 52 and in the St. George's Respiratory Questionnaire (SGRQ; scores range from 0 to 100, with lower scores indicating better quality of life) total score at week 52. RESULTS: A total of 935 patients underwent randomization: 470 were assigned to the dupilumab group and 465 to the placebo group. As prespecified, the primary analysis was performed after a positive interim analysis and included all available data for the 935 participants, 721 of whom were included in the analysis at week 52. The annualized rate of moderate or severe exacerbations was 0.86 (95% confidence interval [CI], 0.70 to 1.06) with dupilumab and 1.30 (95% CI, 1.05 to 1.60) with placebo; the rate ratio as compared with placebo was 0.66 (95% CI, 0.54 to 0.82; P<0.001). The prebronchodilator FEV1 increased from baseline to week 12 with dupilumab (least-squares mean change, 139 ml [95% CI, 105 to 173]) as compared with placebo (least-squares mean change, 57 ml [95% CI, 23 to 91]), with a significant least-squares mean difference at week 12 of 82 ml (P<0.001) and at week 52 of 62 ml (P = 0.02). No significant between-group difference was observed in the change in SGRQ scores from baseline to 52 weeks. The incidence of adverse events was similar in the two groups and consistent with the established profile of dupilumab. CONCLUSIONS: In patients with COPD and type 2 inflammation as indicated by elevated blood eosinophil counts, dupilumab was associated with fewer exacerbations and better lung function than placebo. (Funded by Sanofi and Regeneron Pharmaceuticals; NOTUS ClinicalTrials.gov number, NCT04456673.).


Subject(s)
Antibodies, Monoclonal, Humanized , Eosinophils , Pulmonary Disease, Chronic Obstructive , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Double-Blind Method , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/blood , Male , Female , Middle Aged , Aged , Leukocyte Count , Forced Expiratory Volume/drug effects , Quality of Life , Injections, Subcutaneous , Inflammation/drug therapy , Inflammation/blood
3.
Article in English | MEDLINE | ID: mdl-38797239

ABSTRACT

BACKGROUND: Lactotransferrin (LTF) has an immunomodulatory function, and its expression levels are associated with asthma susceptibility. OBJECTIVES: We sought to investigate LTF messenger RNA (mRNA) expression levels in human bronchial epithelial cells (BECs) as an anti-type 2 (T2) asthma biomarker. METHODS: Association analyses between LTF mRNA expression levels in BECs and asthma-related phenotypes were performed in the Severe Asthma Research Program (SARP) cross-sectional (n = 155) and longitudinal (n = 156) cohorts using a generalized linear model. Correlation analyses of mRNA expression levels between LTF and all other genes were performed by Spearman correlation. RESULTS: Low LTF mRNA expression levels were associated with asthma susceptibility and severity (P < .025), retrospective and prospective asthma exacerbations, and low lung function (P < 8.3 × 10-3). Low LTF mRNA expression levels were associated with high airway T2 inflammation biomarkers (sputum eosinophils and fractional exhaled nitric oxide; P < 8.3 × 10-3) but were not associated with blood eosinophils or total serum IgE. LTF mRNA expression levels were negatively correlated with expression levels of TH2 or asthma-associated genes (POSTN, NOS2, and MUC5AC) and eosinophil-related genes (IL1RL1, CCL26, and IKZF2) and positively correlated with expression levels of TH1 and inflammation genes (IL12A, MUC5B, and CC16) and TH17-driven cytokines or chemokines for neutrophils (CXCL1, CXCL6, and CSF3) (P < 3.5 × 10-6). CONCLUSIONS: Low LTF mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations through upregulation of airway T2 inflammation. LTF is a potential anti-T2 biomarker, and its expression levels may help determine the balance of eosinophilic and neutrophilic asthma.

4.
Article in English | MEDLINE | ID: mdl-38261629

ABSTRACT

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

5.
Am J Respir Cell Mol Biol ; 70(3): 165-177, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37976469

ABSTRACT

Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/genetics , Cell Differentiation , DNA Methylation , Disease Progression , Epigenesis, Genetic , Mixed Function Oxygenases , Proto-Oncogene Proteins
6.
Int J Chron Obstruct Pulmon Dis ; 18: 2795-2817, 2023.
Article in English | MEDLINE | ID: mdl-38050482

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by airflow limitation and persistent respiratory symptoms. People with HIV (PWH) are particularly vulnerable to COPD development; PWH have demonstrated both higher rates of COPD and an earlier and more rapid decline in lung function than their seronegative counterparts, even after accounting for differences in cigarette smoking. Factors contributing to this HIV-associated difference include chronic immune activation and inflammation, accelerated aging, a predilection for pulmonary infections, alterations in the lung microbiome, and the interplay between HIV and inhalational toxins. In this review, we discuss what is known about the epidemiology and pathobiology of COPD among PWH and outline screening, diagnostic, prevention, and treatment strategies.


Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/prevention & control , Risk Factors , Lung , Inflammation/complications , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/epidemiology
7.
Am J Respir Crit Care Med ; 208(10): 1026-1041, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37560988

ABSTRACT

Chronic obstructive pulmonary disease is a major health problem with a high prevalence, a rising incidence, and substantial morbidity and mortality. Its course is punctuated by acute episodes of increased respiratory symptoms, termed exacerbations of chronic obstructive pulmonary disease (ECOPD). ECOPD are important events in the natural history of the disease, as they are associated with lung function decline and prolonged negative effects on quality of life. The present-day therapy for ECOPD with short courses of antibiotics and steroids and escalation of bronchodilators has resulted in only modest improvements in outcomes. Recent data indicate that ECOPD are heterogeneous, raising the need to identify distinct etioendophenotypes, incorporating traits of the acute event and of patients who experience recurrent events, to develop novel and targeted therapies. These characterizations can provide a complete clinical picture, the severity of which will dictate acute pharmacological treatment, and may also indicate whether a change in maintenance therapy is needed to reduce the risk of future exacerbations. In this review we discuss the latest knowledge of ECOPD types on the basis of clinical presentation, etiology, natural history, frequency, severity, and biomarkers in an attempt to characterize these events.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Humans , Disease Progression , Anti-Bacterial Agents/therapeutic use , Phenotype
8.
N Engl J Med ; 389(3): 205-214, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37272521

ABSTRACT

BACKGROUND: In some patients with chronic obstructive pulmonary disease (COPD), type 2 inflammation may increase exacerbation risk and may be indicated by elevated blood eosinophil counts. Dupilumab, a fully human monoclonal antibody, blocks the shared receptor component for interleukin-4 and interleukin-13, key drivers of type 2 inflammation. METHODS: In a phase 3, double-blind, randomized trial, we assigned patients with COPD who had a blood eosinophil count of at least 300 per microliter and an elevated exacerbation risk despite the use of standard triple therapy to receive dupilumab (300 mg) or placebo subcutaneously once every 2 weeks. The primary end point was the annualized rate of moderate or severe exacerbations of COPD. Key secondary and other end points that were corrected for multiplicity were the change in the prebronchodilator forced expiratory volume in 1 second (FEV1) and in the scores on the St. George's Respiratory Questionnaire (SGRQ; range, 0 to 100, with lower scores indicating a better quality of life) and the Evaluating Respiratory Symptoms in COPD (E-RS-COPD; range, 0 to 40, with lower scores indicating less severe symptoms). RESULTS: A total of 939 patients underwent randomization: 468 to the dupilumab group and 471 to the placebo group. The annualized rate of moderate or severe exacerbations was 0.78 (95% confidence interval [CI], 0.64 to 0.93) with dupilumab and 1.10 (95% CI, 0.93 to 1.30) with placebo (rate ratio, 0.70; 95% CI, 0.58 to 0.86; P<0.001). The prebronchodilator FEV1 increased from baseline to week 12 by a least-squares (LS) mean of 160 ml (95% CI, 126 to 195) with dupilumab and 77 ml (95% CI, 42 to 112) with placebo (LS mean difference, 83 ml; 95% CI, 42 to 125; P<0.001), a difference that was sustained through week 52. At week 52, the SGRQ score had improved by an LS mean of -9.7 (95% CI, -11.3 to -8.1) with dupilumab and -6.4 (95% CI, -8.0 to -4.8) with placebo (LS mean difference, -3.4; 95% CI, -5.5 to -1.3; P = 0.002). The E-RS-COPD score at week 52 had improved by an LS mean of -2.7 (95% CI, -3.2 to -2.2) with dupilumab and -1.6 (95% CI, -2.1 to -1.1) with placebo (LS mean difference, -1.1; 95% CI, -1.8 to -0.4; P = 0.001). The numbers of patients with adverse events that led to discontinuation of dupilumab or placebo, serious adverse events, and adverse events that led to death were balanced in the two groups. CONCLUSIONS: Among patients with COPD who had type 2 inflammation as indicated by elevated blood eosinophil counts, those who received dupilumab had fewer exacerbations, better lung function and quality of life, and less severe respiratory symptoms than those who received placebo. (Funded by Sanofi and Regeneron Pharmaceuticals; BOREAS ClinicalTrials.gov number, NCT03930732.).


Subject(s)
Antibodies, Monoclonal, Humanized , Eosinophils , Pulmonary Disease, Chronic Obstructive , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Double-Blind Method , Eosinophils/immunology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Quality of Life , Inflammation/classification , Inflammation/immunology
9.
Respir Care ; 68(7): 871-880, 2023 07.
Article in English | MEDLINE | ID: mdl-37353326

ABSTRACT

COPD is a heterogeneous condition, the onset and trajectory of which is influenced not only by tobacco exposure but also an individual's genetics and the exposures they accumulate over their life course. In such a complex chronic disease, phenotyping individuals based on similar clinical or molecular characteristics can aid in guiding appropriate therapeutic management. Treatable traits, characteristics for which evidence exists for a specific favorable treatment response, are increasingly incorporated into COPD clinical guidelines. But the COPD phenotyping literature is evolving. Innovations in lung imaging and physiologic metrics, as well as omics technologies and biomarker science, are contributing to a better understanding of COPD heterogeneity. This review summarizes the evolution of COPD phenotyping, the current use of phenotyping to direct clinical care, and how innovations in clinical and molecular approaches to unraveling disease heterogeneity are refining our understanding of COPD phenotypes.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Lung/diagnostic imaging , Biomarkers , Phenotype
10.
PLoS Genet ; 19(6): e1010445, 2023 06.
Article in English | MEDLINE | ID: mdl-37352370

ABSTRACT

Hyper-secretion and/or hyper-concentration of mucus is a defining feature of multiple obstructive lung diseases, including chronic obstructive pulmonary disease (COPD). Mucus itself is composed of a mixture of water, ions, salt and proteins, of which the gel-forming mucins, MUC5AC and MUC5B, are the most abundant. Recent studies have linked the concentrations of these proteins in sputum to COPD phenotypes, including chronic bronchitis (CB) and acute exacerbations (AE). We sought to determine whether common genetic variants influence sputum mucin concentrations and whether these variants are also associated with COPD phenotypes, specifically CB and AE. We performed a GWAS to identify quantitative trait loci for sputum mucin protein concentration (pQTL) in the Sub-Populations and InteRmediate Outcome Measures in COPD Study (SPIROMICS, n = 708 for total mucin, n = 215 for MUC5AC, MUC5B). Subsequently, we tested for associations of mucin pQTL with CB and AE using regression modeling (n = 822-1300). Replication analysis was conducted using data from COPDGene (n = 5740) and by examining results from the UK Biobank. We identified one genome-wide significant pQTL for MUC5AC (rs75401036) and two for MUC5B (rs140324259, rs10001928). The strongest association for MUC5B, with rs140324259 on chromosome 11, explained 14% of variation in sputum MUC5B. Despite being associated with lower MUC5B, the C allele of rs140324259 conferred increased risk of CB (odds ratio (OR) = 1.42; 95% confidence interval (CI): 1.10-1.80) as well as AE ascertained over three years of follow up (OR = 1.41; 95% CI: 1.02-1.94). Associations between rs140324259 and CB or AE did not replicate in COPDGene. However, in the UK Biobank, rs140324259 was associated with phenotypes that define CB, namely chronic mucus production and cough, again with the C allele conferring increased risk. We conclude that sputum MUC5AC and MUC5B concentrations are associated with common genetic variants, and the top locus for MUC5B may influence COPD phenotypes, in particular CB.


Subject(s)
Mucins , Pulmonary Disease, Chronic Obstructive , Humans , Mucins/genetics , Mucins/metabolism , Sputum/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Mucus/metabolism , Phenotype
11.
Sci Rep ; 13(1): 8228, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217548

ABSTRACT

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Disease Progression , Smoking/adverse effects , Forced Expiratory Volume , Bronchoalveolar Lavage , Biomarkers
12.
J Asthma ; 60(10): 1824-1835, 2023 10.
Article in English | MEDLINE | ID: mdl-36946148

ABSTRACT

OBJECTIVE: Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial pneumonias (IIPs). We sought to identify functional genes for asthma by combining SNPs and mRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program (SARP). METHODS: Correlation analyses of mRNA expression of six candidate genes (AP2A2, MUC6, MUC2, MUC5AC, MUC5B, and TOLLIP) and asthma phenotypes were performed in the longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n = 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531 non-severe asthma) were performed, and compared with previously published GWASs of IIPs and asthma. RESULTS: Higher expression of AP2A2 and MUC5AC and lower expression of MUC5B in BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P < 0.01). SNPs associated with asthma and IIPs in previous GWASs were eQTL SNPs for MUC5AC, MUC5B, or TOLLIP, however, they were not in strong linkage disequilibrium. The risk alleles for asthma or protective alleles for IIPs were associated with higher expression of MUC5AC and lower expression of MUC5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity (P > 0.8). CONCLUSIONS: SNPs associated with asthma in chr11p15.5 region are not associated with asthma severity neither with IIPs. Higher expression of MUC5AC and lower expression of MUC5B are risk for asthma but protective for IIPs.


Subject(s)
Asthma , Humans , Asthma/genetics , Genome-Wide Association Study , Cross-Sectional Studies , Phenotype , RNA, Messenger , Mucin-5B/genetics , Mucin 5AC/genetics
13.
Front Immunol ; 14: 1076772, 2023.
Article in English | MEDLINE | ID: mdl-36999019

ABSTRACT

E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1ß, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.


Subject(s)
Electronic Nicotine Delivery Systems , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Viral , Mice , Animals , Humans , Nicotine/adverse effects , Interleukin-17/pharmacology , Respiratory Aerosols and Droplets , Lung , Gene Expression
14.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Article in English | MEDLINE | ID: mdl-36796454

ABSTRACT

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Subject(s)
Asthma , Quality of Life , Humans , Asthma/drug therapy , Asthma/genetics , Asthma/diagnosis , Epithelial Cells/metabolism , Adrenal Cortex Hormones/therapeutic use
15.
JCI Insight ; 7(24)2022 12 22.
Article in English | MEDLINE | ID: mdl-36346670

ABSTRACT

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , NK Cell Lectin-Like Receptor Subfamily K , Primary Graft Dysfunction/etiology , Tumor Necrosis Factor-alpha , Lung Transplantation/adverse effects , Lung/metabolism
16.
Nat Microbiol ; 7(11): 1805-1816, 2022 11.
Article in English | MEDLINE | ID: mdl-36266337

ABSTRACT

We carried out integrated host and pathogen metagenomic RNA and DNA next generation sequencing (mNGS) of whole blood (n = 221) and plasma (n = 138) from critically ill patients following hospital admission. We assigned patients into sepsis groups on the basis of clinical and microbiological criteria. From whole-blood gene expression data, we distinguished patients with sepsis from patients with non-infectious systemic inflammatory conditions using a trained bagged support vector machine (bSVM) classifier (area under the receiver operating characteristic curve (AUC) = 0.81 in the training set; AUC = 0.82 in a held-out validation set). Plasma RNA also yielded a transcriptional signature of sepsis with several genes previously reported as sepsis biomarkers, and a bSVM sepsis diagnostic classifier (AUC = 0.97 training set; AUC = 0.77 validation set). Pathogen detection performance of plasma mNGS varied on the basis of pathogen and site of infection. To improve detection of virus, we developed a secondary transcriptomic classifier (AUC = 0.94 training set; AUC = 0.96 validation set). We combined host and microbial features to develop an integrated sepsis diagnostic model that identified 99% of microbiologically confirmed sepsis cases, and predicted sepsis in 74% of suspected and 89% of indeterminate sepsis cases. In summary, we suggest that integrating host transcriptional profiling and broad-range metagenomic pathogen detection from nucleic acid is a promising tool for sepsis diagnosis.


Subject(s)
Critical Illness , Sepsis , Adult , Humans , Prospective Studies , Sepsis/diagnosis , Cohort Studies , RNA
17.
Lancet ; 399(10342): 2227-2242, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35533707

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health-care use worldwide. COPD is caused by exposure to inhaled noxious particles, notably tobacco smoke and pollutants. However, the broad range of factors that increase the risk of development and progression of COPD throughout the life course are increasingly being recognised. Innovations in omics and imaging techniques have provided greater insight into disease pathobiology, which might result in advances in COPD prevention, diagnosis, and treatment. Although few novel treatments have been approved for COPD in the past 5 years, advances have been made in targeting existing therapies to specific subpopulations using new biomarker-based strategies. Additionally, COVID-19 has undeniably affected individuals with COPD, who are not only at higher risk for severe disease manifestations than healthy individuals but also negatively affected by interruptions in health-care delivery and social isolation. This Seminar reviews COPD with an emphasis on recent advances in epidemiology, pathophysiology, imaging, diagnosis, and treatment.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Smoke
18.
Chronic Obstr Pulm Dis ; 9(2): 195-208, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35403414

ABSTRACT

Rationale: It has been suggested that patients with chronic obstructive pulmonary disease (COPD) experience considerable daily respiratory symptom fluctuation. A standardized measure is needed to quantify and understand the implications of day-to-day symptom variability. Objectives: To compare standard deviation with other statistical measures of symptom variability and identify characteristics of individuals with higher symptom variability. Methods: Individuals in the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) Exacerbations sub-study completed an Evaluating Respiratory Symptoms in COPD (E-RS) daily questionnaire. We calculated within-subject standard deviation (WS-SD) for each patient at week 0 and correlated this with measurements obtained 4 weeks later using Pearson's r and Bland Altman plots. Median WS-SD value dichotomized participants into higher versus lower variability groups. Association between WS-SD and exacerbation risk during 4 follow-up weeks was explored. Measurements and Main Results: Diary completion rates were sufficient in 140 (68%) of 205 sub-study participants. Reproducibility (r) of the WS-SD metric from baseline to week 4 was 0.32. Higher variability participants had higher St George's Respiratory Questionnaire (SGRQ) scores (47.3 ± 20.3 versus 39.6 ± 21.5, p=.04) than lower variability participants. Exploratory analyses found no relationship between symptom variability and health care resource utilization-defined exacerbations. Conclusions: WS-SD of the E-RS can be used as a measure of symptom variability in studies of patients with COPD. Patients with higher variability have worse health-related quality of life. WS-SD should be further validated as a measure to understand the implications of symptom variability.

19.
J Clin Invest ; 132(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34762602

ABSTRACT

Altered redox biology challenges all cells, with compensatory responses often determining a cell's fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter SLC7A11 critically restores/maintains intracellular GSH. We hypothesized that high 15LO1, PEBP1, and GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG) ratios, to enhance type 2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11, and T2 biomarkers (Western blot and RNA-Seq) were measured in asthmatic and healthy control (HC) cells and fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared with HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, a T2 cytokine (IL-13) induced 15LO1 generation of hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers, and worsened clinical outcomes. Thus, 15LO1 pathway-induced redox biology perturbations worsen T2 inflammation and asthma control, supporting 15LO1 as a therapeutic target.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Asthma/enzymology , Epithelial Cells/enzymology , Ferroptosis , Glutathione/metabolism , Respiratory Mucosa/enzymology , Signal Transduction , Cell Line , Epithelial Cells/pathology , Gene Expression Regulation , Humans , Inflammation/enzymology , Inflammation/pathology , Oxidation-Reduction , Respiratory Mucosa/pathology
20.
Sci Rep ; 11(1): 23392, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862427

ABSTRACT

Surfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lysates were subjected to SP-A pull-down and tandem mass spectrometry (MS/MS) analysis. We identified one membrane-bound protein, myeloid-associated differentiation marker (MYADM), as a candidate SP-A binding partner. Blocking MYADM on mouse and human eosinophils ex vivo prevented SP-A from inducing apoptosis; blocking MYADM in vivo led to increased persistence of eosinophilia and airway hyper-responsiveness in an ovalbumin (OVA) allergy model and increased airways resistance and mucus production in a house dust mite (HDM) asthma model. Examination of a subset of participants in the Severe Asthma Research Program (SARP) cohort revealed a significant association between epithelial expression of MYADM in asthma patients and parameters of airway inflammation, including: peripheral blood eosinophilia, exhaled nitric oxide (FeNO) and the number of exacerbations in the past 12 months. Taken together, our studies provide the first evidence of MYADM as a novel SP-A-associated protein that is necessary for SP-A to induce eosinophil apoptosis and we bring to light the potential importance of this previously unrecognized transmembrane protein in patients with asthma.


Subject(s)
Asthma/immunology , Eosinophils/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Pulmonary Surfactant-Associated Protein A/metabolism , Pyroglyphidae/immunology , Adult , Animals , Asthma/etiology , Asthma/metabolism , Chromatography, Liquid , Disease Models, Animal , Female , Humans , Male , Mice , Middle Aged , Patient Acuity , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...