Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Cancer Cell ; 42(5): 797-814.e15, 2024 May 13.
Article En | MEDLINE | ID: mdl-38744246

The success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8+ T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST). Target occupancy was increased in inflamed tissue, with drug-bound T cells located in distinct microdomains distinguished by specific intercellular signaling and transcriptional gradients. CPI-bound cells were largely CD4+ T cells, including enrichment in CPI-bound peripheral helper, follicular helper, and regulatory T cells. IFNγ CD8+ T cells emerged from both tissue-resident memory (TRM) and peripheral populations, displayed more restricted target occupancy profiles, and co-localized with damaged epithelial microdomains lacking effective regulatory cues. Our multimodal analysis identifies causal pathways and constitutes a resource to inform novel preventive strategies.


Colitis , Immune Checkpoint Inhibitors , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Animals , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Interferon-gamma/metabolism , Female , Single-Cell Analysis , Mice
2.
Nat Med ; 27(11): 1970-1981, 2021 11.
Article En | MEDLINE | ID: mdl-34675383

Current inflammatory bowel disease (IBD) therapies are ineffective in a high proportion of patients. Combining bulk and single-cell transcriptomics, quantitative histopathology and in situ localization across three cohorts of patients with IBD (total n = 376), we identify coexpressed gene modules within the heterogeneous tissular inflammatory response in IBD that map to distinct histopathological and cellular features (pathotypes). One of these pathotypes is defined by high neutrophil infiltration, activation of fibroblasts and vascular remodeling at sites of deep ulceration. Activated fibroblasts in the ulcer bed display neutrophil-chemoattractant properties that are IL-1R, but not TNF, dependent. Pathotype-associated neutrophil and fibroblast signatures are increased in nonresponders to several therapies across four independent cohorts (total n = 343). The identification of distinct, localized, tissular pathotypes will aid precision targeting of current therapeutics and provides a biological rationale for IL-1 signaling blockade in ulcerating disease.


Inflammatory Bowel Diseases/pathology , Interleukin-1/metabolism , Neutrophil Infiltration/immunology , Neutrophils/immunology , Stromal Cells/immunology , Adult , Aged , Female , Fibroblasts/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Male , Middle Aged , Receptors, Interleukin-1/metabolism , Signal Transduction/physiology , Vascular Remodeling/physiology
3.
Cell Rep ; 28(12): 3077-3091.e5, 2019 09 17.
Article En | MEDLINE | ID: mdl-31533032

MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.


CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , Caco-2 Cells , Cytokines/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Mucosal-Associated Invariant T Cells/pathology , THP-1 Cells
4.
Front Immunol ; 10: 2705, 2019.
Article En | MEDLINE | ID: mdl-31921096

Although sex disparity in immunological function and susceptibility to various inflammatory and infectious disease is recognized in adults, far less is known about the situation in young infants during immune development. We have used an outbred piglet model to explore potential early sex disparity underlying both mucosal immune development and systemic responses to novel antigen. Despite similarities in intestinal barrier function and therefore, presumably, antigen exposure, females had less CD172+ (Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared to males, along with greater regulatory T-cell numbers. This suggests that, during infancy, females may have greater potential for local immune regulation than their male counterparts. However, females also presented with significantly greater systemic antibody responses to injected ovalbumin and dietary soya. Females also synthesized significantly more IgA in mesenteric lymph nodes, whereas males synthesized more in caecal mucosa, suggesting that plasma cells were retained within the MLN in females, but increased numbers of plasma cells circulated through to the mucosal tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on the developing immune system were also sex-dependent. Our results may start to explain inconsistencies in outcomes of trials of functional foods in infants, as distinction between males and females is seldom made. Since later functionality of the immune system is highly dependent on appropriate development during infancy, stratifying nutritional interventions by sex may present a novel means of optimizing treatments and preventative strategies to reduce the risk of the development of immunological disorders in later life.


Diet , Intestinal Mucosa/immunology , Sex Characteristics , Animals , Animals, Newborn , Inulin/immunology , Inulin/pharmacology , Probiotics , Swine
5.
Front Immunol ; 9: 1061, 2018.
Article En | MEDLINE | ID: mdl-29868021

Epidemiological studies have demonstrated that exposure to farm environments during childhood can be linked to reductions in the incidence of immune disorders, but generating an appropriate model is difficult. 108 half-sibling piglets were born on either extensive (outdoor) or intensive (indoor) farms: at 1 day old, a subset of piglets from each litter were transferred to a high-hygiene isolator facility to create differences in rearing environment either during birth/first day or during the subsequent 56 days of life. Interactions between CD14, CD16, MHCIIDR, and capillary endothelium were assessed using four-color quantitative fluorescence immunohistology. Effects of birth and rearing environment on the antigen-presenting microenvironment of the proximal and distal jejunum (professional and stromal) were apparent at 5, 28, and 56 days after birth However, effects on CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the intestinal mucosa were apparent around weaning at 28 days but had disappeared by 56 days. These Tregs were reduced in the isolator piglets compared to their farm-reared siblings, but this effect was less marked in piglets born on the extensive farm and required administration of antibiotics. Our results suggest that there may be at least two windows of opportunity in which different farm environments were influencing immune development: one during the perinatal period (up to the first day of life), and one during later infancy. Furthermore, the differences on Tregs suggest that the effects of early life influences may be particularly critical around weaning.


Adaptation, Physiological , Anti-Bacterial Agents/pharmacology , Environmental Exposure , Farms , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Animals, Newborn , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Fluorescent Antibody Technique , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Swine , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Weaning
6.
Vet Immunol Immunopathol ; 152(1-2): 13-9, 2013 Mar 15.
Article En | MEDLINE | ID: mdl-23078904

Studying the pathogenesis of an infectious disease like colibacillosis requires an understanding of the responses of target hosts to the organism both as a pathogen and as a commensal. The mucosal immune system constitutes the primary line of defence against luminal micro-organisms. The immunoglobulin-superfamily-based adaptive immune system evolved in the earliest jawed vertebrates, and the adaptive and innate immune system of humans, mice, pigs and ruminants co-evolved in common ancestors for approximately 300 million years. The divergence occurred only 100 mya and, as a consequence, most of the fundamental immunological mechanisms are very similar. However, since pressure on the immune system comes from rapidly evolving pathogens, immune systems must also evolve rapidly to maintain the ability of the host to survive and reproduce. As a consequence, there are a number of areas of detail where mammalian immune systems have diverged markedly from each other, such that results obtained in one species are not always immediately transferable to another. Thus, animal models of specific diseases need to be selected carefully, and the results interpreted with caution. Selection is made simpler where specific host species like cattle and pigs can be both target species and reservoirs for human disease, as in infections with Escherichia coli.


Biological Evolution , Escherichia coli Infections/genetics , Escherichia coli Infections/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Immunity, Innate/genetics , Immunity, Mucosal/genetics , Animals , Disease Models, Animal , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Humans , Mice , Ruminants , Swine
7.
Autoimmun Rev ; 12(6): 643-7, 2013 Apr.
Article En | MEDLINE | ID: mdl-23201916

Multicellularity evolved well before 600 million years ago, and all multicellular animals have evolved since then with the need to protect against pathogens. There is no reason to expect their immune systems to be any less sophisticated than ours. The vertebrate system, based on rearranging immunoglobulin-superfamily domains, appears to have evolved partly as a result of chance insertion of RAG genes by horizontal transfer. Remarkably sophisticated systems for expansion of immunological repertoire have evolved in parallel in many groups of organisms. Vaccination of invertebrates against commercially important pathogens has been empirically successful, and suggests that the definition of an adaptive and innate immune system should no longer depend on the presence of memory and specificity, since these terms are hard to define in themselves. The evolution of randomly-created immunological repertoire also carries with it the potential for generating autoreactive specificities and consequent autoimmune damage. While invertebrates may use systems analogous to ours to control autoreactive specificities, they may have evolved alternative mechanisms which operate either at the level of individuals-within-populations rather than cells-within-individuals, by linking self-reactive specificities to regulatory pathways and non-self-reactive to effector pathways.


Biological Evolution , Immune System , Adaptive Immunity , Animals , Humans
...