Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930872

ABSTRACT

This study is the first to investigate the chemical composition and antioxidant, anti-inflammatory, and cytotoxic activities of Peperomia leptostachya leaf oil. A yellow oil was obtained through hydro-distillation, with a yield of 0.1% (w/w). The GC-MS analysis revealed 66 compounds, constituting 99.6% of the oil. Sesquiterpene hydrocarbons predominated (70.4%), followed by monoterpene hydrocarbons (13.2%), oxygenated sesquiterpenes (12.4%), non-terpenic compounds (2.0%), and oxygenated monoterpenes (1.6%). Major constituents included germacrene D (25.1%), (E)-caryophyllene (17.4%), bicyclogermacrene (6.6%), α-pinene (6.2%), and ß-pinene (4.7%). The assessment of antioxidant capacity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay yielded a weak effect, with an IC50 value > 100 µg/mL. The inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells was quantified using the MTT assay, showing an IC50 value of 15.15 ± 0.68 µg/mL. Furthermore, cytotoxic effects on SK-LU-1 cell line growth were evaluated using the sulforhodamine B assay, resulting in an IC50 value of 37.45 ± 2.43 µg/mL. The anti-inflammatory activity was notable among the analyzed bioactivities of this oil. By employing a computational model, the predominant secondary metabolites in the essential oil were selected as candidates for interaction analysis with cyclooxygenase-2, an enzyme implicated in the inflammatory response. Our findings suggest that P. leptostachya leaf oil could serve as a potential source of natural compounds with prospective therapeutic effects in treating inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Oils, Volatile , Peperomia , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Mice , Animals , RAW 264.7 Cells , Peperomia/chemistry , Nitric Oxide/metabolism , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Computer Simulation , Southeast Asian People
2.
J Mol Graph Model ; 129: 108747, 2024 06.
Article in English | MEDLINE | ID: mdl-38447296

ABSTRACT

Cyclooxygenases 1 and 2 (COX-1/2) are enzymes renowned for inducing inflammatory responses through the production of prostaglandins. Thus, the development of COX inhibitors has been a promising approach for identifying compounds with anti-inflammatory potential. In this study, we designed 27 new compounds (1-27) based on the structure of a previously known COX inhibitor, using the Ligand Designer tool. Our aim was to improve the affinity of the compounds with COX enzymes by inducing interactions with residue Arg120 while retaining the good π-π stacking interactions of the chromene-phenyl scaffold. Through screening based on ligand-binding free energy defined by molecular docking simulations and MM/GBSA technique, compounds 9 and 10 were identified as having the highest ability to inhibit COX proteins. The binding affinities of the two compounds with COX-1/2 were superior to those of the original NAI10 compound and the reference drug indomethacin. Our virtual screening suggests that compounds 9 and 10 have a strong ability to inhibit COX-1/2 and thus could be promising candidates for further anti-inflammatory drug studies. In essence, our study underscores the pivotal role of the N-aryl iminocoumarin scaffold in shaping the future landscape of novel anti-inflammatory drug development.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 Inhibitors , Molecular Docking Simulation , Ligands , Cyclooxygenase 2/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry
3.
J Biomol Struct Dyn ; : 1-8, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284361

ABSTRACT

PROTACs (Proteolysis Targeting Chimeras), heterobifunctional molecules, exhibit selectivity in degrading target proteins through E3 ubiquitin ligases. Designing effective PROTACs requires a deep understanding of the intricate binding interactions in the ternary complex (POI/PROTAC/E3 ligase), crucial for efficient target protein degradation. To address this challenge, we introduce a novel computational virtual screening method that considers essential amino acid interactions between the protein of interest and the chosen E3 ligase. This approach enhances accuracy and reliability, facilitating the strategic development of potent PROTACs. Utilizing a crystallized model of the VHL:PROTAC:SMARCA2BD ternary complex (PDB: 7Z6L), we assessed the effectiveness of our method. Our study reveals that increasing the number of essential restraints between the two proteins reduces the generated docking poses, leading to closer alignment with the experimental ternary complex. Specifically, utilizing three restraints showed the closest resemblance to the published complex, highlighting crucial interactions such as an H-bond between A:Gln 89 and B:Asn 67, along with two hydrophobic interactions: A:Gly 22 with B:Arg 69 and A:Glu 37 with B:Pro 99. This resulted in a significant decrease in the mean RMSD value from 31.8 and 31.0 Å to 24.4 Å, respectively. This underscores the importance of incorporating multiple essential restraints to enhance docking accuracy. Building on this progress, we introduce a systematic approach to design potential PROTACs between the Estrogen receptor and the E3 ligase, utilizing bridging intermediates with 4, 6, or 7 carbon atoms. By providing a more accurate and efficient means of identifying optimal PROTAC candidates, this approach has the potential to accelerate the development of targeted therapies and reduce the time and costs associated with drug discovery.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL