Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Radiat Isot ; 189: 110414, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36095995

ABSTRACT

During routine operation of the Facility for Rare Isotope Beams (FRIB), radionuclides will accumulate in both the aqueous beam dump and along the beamline in the process of beam purification. These byproduct radionuclides, many of which are far from stability, can be collected and purified for use in other scientific applications in a process called isotope harvesting. In this work, the viability of 88Zr harvesting from solid components was investigated at the National Superconducting Cyclotron Laboratory. A secondary 88Zr beam was stopped in a series of collectors comprised of Al, Cu, W, and Au foils. This work details irradiation of the collector foils and the subsequent radiochemical processing to isolate the deposited 88Zr (and its daughter 88Y) from them. Total average recovery from the Al, Cu, and Au collector foils was (91.3 ± 8.9) % for 88Zr and (95.0 ± 5.8) % for 88Y, respectively, which is over three times higher recovery than in a previous aqueous-phase harvesting experiment. The utility of solid-phase isotope harvesting to access elements such as Zr that readily hydrolyze in near-neutral pH aqueous conditions has been demonstrated for application to harvesting from solid components at FRIB.


Subject(s)
Cyclotrons , Zirconium , Radiochemistry/methods , Radioisotopes , Radiopharmaceuticals
2.
Sci Rep ; 12(1): 1433, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35082335

ABSTRACT

A flowing-water target was irradiated with a 150 MeV/nucleon beam of 78Kr at the National Superconducting Cyclotron Laboratory to produce 77Kr and 76Kr. Real-time gamma-imaging measurements revealed the mass transport of the krypton radioisotopes through the target-water processing, or "isotope harvesting", system. The production rates were determined to be 2.7(1) × 10-4 nuclei of 76Kr and 1.18(6) × 10-2 nuclei of 77Kr formed per incident 78Kr ion. Utilizing an off-gas processing line as part of the isotope harvesting system, a total of 7.2(1) MBq of 76Kr and 19.1(6) MBq of 77Kr were collected in cold traps. Through the decay, the daughter radionuclides 76Br and 77Br were generated and removed from the traps with an average efficiency of 77 ± 12%. Due to the differences in half-lives of 76Kr and 77Kr, it was possible to isolate a pure sample of 76Br with 99.9% radionuclidic purity. The successful collection of krypton radioisotopes to generate 76Br and 77Br demonstrates the feasibility of gas-phase isotope harvesting from irradiated accelerator cooling-water. Larger-scale collections are planned for collecting by-product radionuclides from the Facility for Rare Isotope Beams.

3.
ACS Omega ; 5(43): 27864-27872, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163769

ABSTRACT

An experiment was performed at the National Superconducting Cyclotron Laboratory using a 140 MeV/nucleon 48Ca beam and a flowing-water target to produce 47Ca for the first time with this production route. A production rate of 0.020 ± 0.004 47Ca nuclei per incoming beam particle was measured. An isotope harvesting system attached to the target was used to collect radioactive cationic products, including 47Ca, from the water on a cation-exchange resin. The 47Ca collected was purified using three separation methods optimized for this work: (1) DGA extraction chromatography resin with HNO3 and HCl, (2) AG MP-50 cation-exchange resin with an increasing concentration gradient of HCl, and (3) AG MP-50 cation-exchange resin with a methanolic HCl gradient. These methods resulted in ≥99 ± 2% separation yield of 47Ca with 100% radionuclidic purity within the limits of detection for HPGe measurements. Inductively coupled plasma-optical emission spectrometry (ICP-OES) was used to identify low levels of stable ions in the water of the isotope harvesting system during the irradiation and in the final purified solution of 47Ca. For the first time, this experiment demonstrated the feasibility of the production, collection, and purification of 47Ca through isotope harvesting for the generation of 47Sc for nuclear medicine applications.

4.
Appl Radiat Isot ; 158: 109049, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32174374

ABSTRACT

A flowing-water target was irradiated with a 140 MeV/u, 8 nA 40Ca20+ beam to test the feasibility of isotope harvesting at the upcoming Facility for Rare Isotope Beams. Among other radionuclides, 2.6(2)E-6 48Cr and 5.6(5)E-6 28 Mg nuclei were formed for every impingent 40Ca and were collected through ion exchange. Radiolysis-induced molecular hydrogen evolved from the target at an initial rate of 0.91(9) H2 molecules per 100 eV of beam energy deposited. No radiation-accelerated corrosion of the target material was observed.

SELECTION OF CITATIONS
SEARCH DETAIL