Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Med Genet ; 57(1): 38-47, 2020 01.
Article En | MEDLINE | ID: mdl-31519711

BACKGROUND: Fabry disease is a progressive multisystemic disease, which affects the kidney and cardiovascular systems. Various treatments exist but decisions on how and when to treat are contentious. The current marker for monitoring treatment is plasma globotriaosylsphingosine (lyso-Gb3), but it is not informative about the underlying and developing disease pathology. METHODS: We have created a urine proteomic assay containing a panel of biomarkers designed to measure disease-related pathology which include the inflammatory system, lysosome, heart, kidney, endothelium and cardiovascular system. Using a targeted proteomic-based approach, a series of 40 proteins for organ systems affected in Fabry disease were multiplexed into a single 10 min multiple reaction monitoring Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) assay and using only 1 mL of urine. RESULTS: Six urinary proteins were elevated in the early-stage/asymptomatic Fabry group compared with controls including albumin, uromodulin, α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C and intracellular adhesion molecule 1. Albumin demonstrated an increase in urine and could indicate presymptomatic disease. The only protein elevated in the early-stage/asymptomatic patients that continued to increase with progressive multiorgan involvement was glycogen phosphorylase brain form. Podocalyxin, fibroblast growth factor 23, cubulin and Alpha-1-Microglobulin/Bikunin Precursor (AMBP) were elevated only in disease groups involving kidney disease. Nephrin, a podocyte-specific protein, was elevated in all symptomatic groups. Prosaposin was increased in all symptomatic groups and showed greater specificity (p<0.025-0.0002) according to disease severity. CONCLUSION: This work indicates that protein biomarkers could be helpful and used in conjunction with plasma lyso-Gb3 for monitoring of therapy or disease progression in patients with Fabry disease.


Biomarkers/urine , Fabry Disease/metabolism , Proteomics , Urine/chemistry , Chromatography, Liquid , Fabry Disease/blood , Fabry Disease/urine , Female , Glycolipids/blood , Humans , Male , Sphingolipids/blood , Tandem Mass Spectrometry
2.
J Inherit Metab Dis ; 43(1): 2-13, 2020 01.
Article En | MEDLINE | ID: mdl-31222759

Inborn errors of metabolism cause disease because of accumulation of a metabolite before the blocked step or deficiency of an essential metabolite downstream of the block. Treatments can be directed at reducing the levels of a toxic metabolite or correcting a metabolite deficiency. Many disorders have been treated successfully first in a single patient because we can measure the metabolites and adjust treatment to get them as close as possible to the normal range. Examples are drawn from Komrower's description of treatment of homocystinuria and the author's trials of treatment in bile acid synthesis disorders (3ß-hydroxy-Δ5 -C27 -steroid dehydrogenase deficiency and Δ4 -3-oxosteroid 5ß-reductase deficiency), neurotransmitter amine disorders (aromatic L-amino acid decarboxylase [AADC] and tyrosine hydroxylase deficiencies), and vitamin B6 disorders (pyridox(am)ine phosphate oxidase deficiency and pyridoxine-dependent epilepsy [ALDH7A1 deficiency]). Sometimes follow-up shows there are milder and more severe forms of the disease and even variable clinical manifestations but by measuring the metabolites we can adjust the treatment to get the metabolites into the normal range. Biochemical measurements are not subject to placebo effects and will also show if the disorder is improving spontaneously. The hypothesis that can then be tested for clinical outcome is whether getting metabolite(s) into a target range leads to an improvement in an outcome parameter such as abnormal liver function tests, hypokinesia, epilepsy control etc. The metabolite-guided approach to treatment is an example of personalized medicine and is a better way of determining efficacy for disorders of variable severity than a randomized controlled clinical trial.


3-Hydroxysteroid Dehydrogenases/deficiency , Bile Acids and Salts/blood , Epilepsy/etiology , Vitamin B 6/metabolism , Administration, Oral , Bile Acids and Salts/biosynthesis , Epilepsy/drug therapy , Epilepsy/metabolism , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/physiopathology , Pyridoxal Phosphate/therapeutic use , Pyridoxaminephosphate Oxidase/deficiency , Pyridoxine/therapeutic use , Randomized Controlled Trials as Topic , Vitamin B 6 Deficiency/complications
3.
J Inherit Metab Dis ; 34(3): 593-604, 2011 Jun.
Article En | MEDLINE | ID: mdl-21229319

Inborn errors of bile acid synthesis can produce life-threatening cholestatic liver disease (which usually presents in infancy) and progressive neurological disease presenting later in childhood or in adult life. Both types of disease can often be treated very effectively with bile acid replacement therapy and it is therefore important to diagnose these disorders as early as possible. The cholestatic disease in infancy is characterised by conjugated hyperbilirubinaemia with raised transaminases but normal γ-glutamyl transpeptidase and a biopsy showing a giant cell hepatitis. There is usually evidence of fat-soluble vitamin malabsorption. The neurological presentation often includes signs of upper motor neurone damage (spastic paraparesis). The most useful screening test for many of these disorders is analysis of urinary cholanoids (bile acids and bile alcohols); this is usually now achieved by electrospray ionisation tandem mass spectrometry. The disorders that are discussed in this review are: 3ß-hydroxysteroid-Δ5-C27-steroid dehydrogenase deficiency, Δ4-3-oxosteroid 5ß-reductase deficiency, sterol 27-hydroxylase deficiency (cerberotendinous xanthomatosis, CTX), oxysterol 7α-hydroxylase deficiency (including one form of hereditary spastic paraparesis) and the amidation defects, bile acid-CoA: aminoacid N-acyltransferase (BAAT) deficiency and bile acid-CoA ligase deficiency. The disorders of peroxisome biogenesis and peroxisomal ß-oxidation that affect bile acid synthesis will be covered in the review by Ferdinandusse et al.


Bile Acids and Salts/biosynthesis , Metabolic Diseases/etiology , Metabolism, Inborn Errors/etiology , Adult , Animals , Diagnostic Techniques, Endocrine , Humans , Metabolic Diseases/metabolism , Metabolism, Inborn Errors/metabolism , Models, Biological , Signal Transduction
...