Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Learn Health Syst ; 8(Suppl 1): e10410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883877

ABSTRACT

Background: An integral component of research within a learning health system is patient engagement at all stages of the research process. While there are well-defined best practices for engaging with patients on predetermined research questions, there is little specific methodology for engaging patients at the stage of research question formation and prioritization. Further, with an emerging disease such as Long COVID, population-specific strategies for meaningful engagement have not been characterized. Methods: The COVID-19 Focused Virtual Patient Engagement Studio (CoVIP studio) was a virtual panel created to facilitate patient-centered studies surrounding the effects of long-term COVID ("Long COVID") also known as post-acute SARS-CoV-2 syndrome (PASC). A diverse group of panelists was recruited and trained in several different areas of knowledge, competencies, and abilities regarding research and Long COVID. A three-step approach was developed that consisted of recording panelists' broad wonderings to generate patient-specific research questions. Results: The "wonderings" discussed in panelists' training sessions were analyzed to identify specific populations, interventions, comparators, outcomes, and timeframes (PICOT) elements, which were then used to create a survey to identify the elements of greatest importance to the panel. Based on the findings, 10 research questions were formulated using the PICOT format. The panelists then ranked the questions on perceived order of importance and distributed one million fictional grant dollars between the five chosen questions in the second survey. Through this stepwise prioritization process, the project team successfully translated panelists' research wonderings into investigable research questions. Conclusion: This methodology has implications for the advancement of patient-engaged prioritization both within the scope of Long COVID research and in research on other rare or emerging diseases.

2.
Afr J Lab Med ; 10(1): 1414, 2021.
Article in English | MEDLINE | ID: mdl-34858796

ABSTRACT

BACKGROUND: Ebola virus emerged in West Africa in December 2013. The ease of mobility, porous borders, and lack of public health infrastructure led to the largest Ebola virus disease (EVD) outbreak to date. INTERVENTION: The 2013 EVD outbreak signalled the need for laboratory diagnostic capabilities in areas without strong public health systems. As part of the United States' Department of Defense response, MRIGlobal was contracted to design, fabricate, equip, deploy, and operate two mobile diagnostic laboratories (MDLs). The first laboratory analysed blood samples from patients in an adjacent Ebola Treatment Centre (ETC) and buccal swabs from the deceased in the community in Moyamba, Sierra Leone. The second laboratory was deployed to support an ETC in Conakry, Guinea. The Department of Defense provided real-time quantitative reverse transcription polymerase chain reaction assays that were deployed and validated on-site. LESSONS LEARNT: Prompt and accurate molecular diagnostics reduced sample turn-around times from over 24 h to under 4 h. Experienced laboratory staff tested up to 110 samples per day and on-site engineering proved necessary for MDL setup and operation. As the Ebola response slowed, the sustainment of the MDLs' operations was prioritised, including staff training and the transition of the MDLs to local governments. Training programmes for local staff were prepared in Sierra Leone and Guinea. RECOMMENDATIONS: The MRIGlobal MDL team significantly contributed to establishing increased laboratory capacity during the EVD outbreak in West Africa. Using the MDLs for molecular diagnosis is highly recommended until more sustainable solutions can be provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...