Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L796-L804, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651338

ABSTRACT

Secreted deoxyribonucleases (DNases), such as DNase-I and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n = 439) and from healthy controls (n = 89). We found that DNase activity was lower than normal in asthma [78.7 relative fluorescence units (RFU)/min vs. 120.4 RFU/min, P < 0.0001]. Compared to patients with asthma with sputum DNase activity in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post-translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway that is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.NEW & NOTEWORTHY We developed a new DNase assay and used it to show that DNase activity is impaired in asthma airways.


Subject(s)
Asthma , Deoxyribonuclease I , Sputum , Humans , Asthma/metabolism , Asthma/enzymology , Female , Male , Sputum/metabolism , Sputum/enzymology , Adult , Middle Aged , Deoxyribonuclease I/metabolism , Deoxyribonucleases/metabolism
2.
medRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38343848

ABSTRACT

Background: Blood lipids are dysregulated in pulmonary hypertension (PH). Lower high-density lipoproteins cholesterol (HDL-C) and low-density lipoproteins cholesterol (LDL-C) are associated with disease severity and death in PH. Right ventricle (RV) dysfunction and failure are the major determinants of morbidity and mortality in PH. This study aims to test the hypothesis that dyslipidemia is associated with RV dysfunction in PH. Methods: We enrolled healthy control subjects (n=12) and individuals with PH (n=30) (age: 18-65 years old). Clinical characteristics, echocardiogram, 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (PET) scan, blood lipids, including total cholesterol (TC), triglycerides (TG), lipoproteins (LDL-C and HDL-C), and N-terminal pro-B type Natriuretic Peptide (NT-proBNP) were determined. Results: Individuals with PH had lower HDL-C [PH, 41±12; control, 56±16 mg/dL, p<0.01] and higher TG to HDL-C ratio [PH, 3.6±3.1; control, 2.2±2.2, p<0.01] as compared to controls. TC, TG, and LDL-C were similar between PH and controls. Lower TC and TG were associated with worse RV function measured by RV strain (R=-0.43, p=0.02 and R=-0.37, p=0.05 respectively), RV fractional area change (R=0.51, p<0.01 and R=0.48, p<0.01 respectively), RV end-systolic area (R=-0.63, p<0.001 and R=-0.48, p<0.01 respectively), RV end-diastolic area: R=-0.58, p<0.001 and R=-0.41, p=0.03 respectively), and RV glucose uptake by PET (R=-0.46, p=0.01 and R=-0.30, p=0.10 respectively). NT-proBNP was negatively correlated with TC (R=-0.61, p=0.01) and TG (R=-0.62, p<0.02) in PH. Conclusion: These findings confirm dyslipidemia is associated with worse right ventricular function in PH.

3.
medRxiv ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38106101

ABSTRACT

Rationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.

4.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L617-L627, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37786941

ABSTRACT

Understanding metabolic evolution underlying pulmonary arterial hypertension (PAH) development may clarify pathobiology and reveal disease-specific biomarkers. Patients with systemic sclerosis (SSc) are regularly surveilled for PAH, presenting an opportunity to examine metabolic change as disease develops in an at-risk cohort. We performed mass spectrometry-based metabolomics on longitudinal serum samples collected before and near SSc-PAH diagnosis, compared with time-matched SSc subjects without PAH, in a SSc surveillance cohort. We validated metabolic differences in a second cohort and determined metabolite-phenotype relationships. In parallel, we performed serial metabolomic and hemodynamic assessments as the disease developed in a preclinical model. For differentially expressed metabolites, we investigated corresponding gene expression in human and rodent PAH lungs. Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. Higher kyn/trp measured two years before diagnostic right heart catheterization increased the odds of SSc-PAH diagnosis (OR 1.57, 95% CI 1.05-2.36, P = 0.028). The slope of kyn/trp rise during SSc surveillance predicted PAH development and mortality. In both clinical and experimental PAH, higher kynurenine pathway metabolites correlated with adverse pulmonary vascular and RV measurements. In human and rodent PAH lungs, expression of TDO2, which encodes tryptophan 2,3 dioxygenase (TDO), a protein that catalyzes tryptophan conversion to kynurenine, was significantly upregulated and tightly correlated with pulmonary hypertensive features. Upregulated kynurenine pathway metabolism occurs early in PAH, localizes to the lung, and may be modulated by TDO2. Kynurenine pathway metabolites may be candidate PAH biomarkers and TDO warrants exploration as a potential novel therapeutic target.NEW & NOTEWORTHY Our study shows an early increase in kynurenine pathway metabolism in at-risk subjects with systemic sclerosis who develop pulmonary arterial hypertension (PAH). We show that kynurenine pathway upregulation precedes clinical diagnosis and that this metabolic shift is associated with increased disease severity and shorter survival times. We also show that gene expression of TDO2, an enzyme that generates kynurenine from tryptophan, rises with PAH development.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Scleroderma, Systemic , Humans , Hypertension, Pulmonary/metabolism , Pulmonary Arterial Hypertension/complications , Kynurenine , Tryptophan , Scleroderma, Systemic/complications , Familial Primary Pulmonary Hypertension , Biomarkers
5.
J Allergy Clin Immunol ; 151(6): 1513-1524, 2023 06.
Article in English | MEDLINE | ID: mdl-36796454

ABSTRACT

BACKGROUND: Inhaled corticosteroids (CSs) are the backbone of asthma treatment, improving quality of life, exacerbation rates, and mortality. Although effective for most, a subset of patients with asthma experience CS-resistant disease despite receiving high-dose medication. OBJECTIVE: We sought to investigate the transcriptomic response of bronchial epithelial cells (BECs) to inhaled CSs. METHODS: Independent component analysis was performed on datasets, detailing the transcriptional response of BECs to CS treatment. The expression of these CS-response components was examined in 2 patient cohorts and investigated in relation to clinical parameters. Supervised learning was used to predict BEC CS responses using peripheral blood gene expression. RESULTS: We identified a signature of CS response that was closely correlated with CS use in patients with asthma. Participants could be separated on the basis of CS-response genes into groups with high and low signature expression. Patients with low expression of CS-response genes, particularly those with a severe asthma diagnosis, showed worse lung function and quality of life. These individuals demonstrated enrichment for T-lymphocyte infiltration in endobronchial brushings. Supervised machine learning identified a 7-gene signature from peripheral blood that reliably identified patients with poor CS-response expression in BECs. CONCLUSIONS: Loss of CS transcriptional responses within bronchial epithelium was related to impaired lung function and poor quality of life, particularly in patients with severe asthma. These individuals were identified using minimally invasive blood sampling, suggesting these findings may enable earlier triage to alternative treatments.


Subject(s)
Asthma , Quality of Life , Humans , Asthma/drug therapy , Asthma/genetics , Asthma/diagnosis , Epithelial Cells/metabolism , Adrenal Cortex Hormones/therapeutic use
6.
J Immunol ; 209(10): 1860-1869, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36426949

ABSTRACT

IL-17A plays an important role in the pathogenesis of asthma, particularly the neutrophilic corticosteroid (CS)-resistant subtype of asthma. Clinical studies suggest that a subset of asthma patients, i.e., Th17/IL-17A-mediated (type 17) CS-resistant neutrophilic asthma, may improve with Th17/IL-17A pathway blockade. However, little is known about the mechanisms underlying type 17 asthma and CS response. In this article, we show that blood levels of lipocalin-2 (LCN2) and serum amyloid A (SAA) levels are positively correlated with IL-17A levels and are not inhibited by high-dose CS usage in asthma patients. In airway cell culture systems, IL-17A induces these two secreted proteins, and their induction is enhanced by CS. Furthermore, plasma LCN2 and SAA levels are increased in mice on a preclinical type 17 asthma model, correlated to IL-17A levels, and are not reduced by glucocorticoid (GC). In the mechanistic studies, we identify CEBPB as the critical transcription factor responsible for the synergistic induction of LCN2 and SAA by IL-17A and GC. IL-17A and GC collaboratively regulate CEBPB at both transcriptional and posttranscriptional levels. The posttranscriptional regulation of CEBPB is mediated in part by Act1, the adaptor and RNA binding protein in IL-17A signaling, which directly binds CEBPB mRNA and inhibits its degradation. Overall, our findings suggest that blood LCN2 and SAA levels may be associated with a type 17 asthma subtype and provide insight into the molecular mechanism of the IL-17A-Act1/CEBPB axis on these CS-resistant genes.


Subject(s)
Asthma , Interleukin-17 , Mice , Animals , Interleukin-17/genetics , Asthma/drug therapy , Asthma/pathology , Th17 Cells/pathology , Signal Transduction , Glucocorticoids
7.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L548-L557, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36126269

ABSTRACT

Asthma is an inflammatory disease of the airways characterized by eosinophil recruitment, eosinophil peroxidase release, and protein oxidation through bromination, which following tissue remodeling results in excretion of 3-bromotyrosine. Predicting exacerbations and reducing their frequency is critical for the treatment of severe asthma. In this study, we aimed to investigate whether urinary total conjugated bromotyrosine can discriminate asthma severity and predict asthma exacerbations. We collected urine from participants with severe (n = 253) and nonsevere (n = 178) asthma, and the number of adjudicated exacerbations in 1-yr longitudinal follow-up was determined among subjects enrolled in the Severe Asthma Research Program, a large-scale National Institutes of Health (NIH)-funded consortium. Urine glucuronidated bromotyrosine and total conjugated forms were quantified by hydrolysis with either glucuronidase or methanesulfonic acid, respectively, followed by liquid chromatography-tandem mass spectrometry analyses of free 3-bromotyrosine. Blood and sputum eosinophils were also counted. The majority of 3-bromotyrosine in urine was found to exist in conjugated forms, with glucuronidated bromotyrosine representing approximately a third, and free bromotyrosine less than 1% of total conjugated bromotyrosine. Total conjugated bromotyrosine was poorly correlated with blood (r2 = 0.038) or sputum eosinophils (r2 = 0.0069). Compared with participants with nonsevere asthma, participants with severe asthma had significantly higher urinary total conjugated bromotyrosine levels. Urinary total conjugated bromotyrosine was independently associated with asthma severity, correlated with the number of asthma exacerbations, and served as a predictor of asthma exacerbation risk over 1-yr of follow-up.


Subject(s)
Asthma , Eosinophils , Humans , Eosinophil Peroxidase/metabolism , Eosinophils/metabolism , Asthma/diagnosis , Asthma/metabolism , Sputum/metabolism , Leukocyte Count , Glucuronidase/metabolism
8.
J Am Coll Cardiol ; 80(7): 697-718, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35953136

ABSTRACT

BACKGROUND: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. OBJECTIVES: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. METHODS: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. RESULTS: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. CONCLUSIONS: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification. (Pulmonary Vascular Disease Phenomics Program PVDOMICS [PVDOMICS]; NCT02980887).


Subject(s)
Hypertension, Pulmonary , Vascular Diseases , Carbon Monoxide , Cross-Sectional Studies , Humans , Hypertension, Pulmonary/etiology , Pulmonary Circulation , Vascular Diseases/complications , Vascular Diseases/diagnosis , Vascular Diseases/surgery
9.
mBio ; 13(2): e0040222, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35343786

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers cytokine-mediated inflammation, leading to a myriad of clinical presentations in COVID-19. The SARS-CoV-2 open reading frame 8 (ORF8) is a secreted and rapidly evolving glycoprotein. Patients infected with SARS-CoV-2 variants with ORF8 deleted are associated with mild disease outcomes, but the molecular mechanism behind this is unknown. Here, we report that SARS-CoV-2 ORF8 is a viral cytokine that is similar to but distinct from interleukin 17A (IL-17A) as it induces stronger and broader human IL-17 receptor (hIL-17R) signaling than IL-17A. ORF8 primarily targeted blood monocytes and induced the heterodimerization of hIL-17RA and hIL-17RC, triggering a robust inflammatory response. Transcriptome analysis revealed that besides its activation of the hIL-17R pathway, ORF8 upregulated gene expression for fibrosis signaling and coagulation dysregulation. A naturally occurring ORF8 L84S variant that was highly associated with mild COVID-19 showed reduced hIL-17RA binding and attenuated inflammatory responses. This study reveals how SARS-CoV-2 ORF8 by a viral mimicry of the IL-17 cytokine contributes to COVID-19 severe inflammation. IMPORTANCE Patients infected with SARS-CoV-2 variants lacking open reading frame 8 (ORF8) have been associated with milder infection and disease outcome, but the molecular mechanism behind how this viral accessory protein mediates disease pathogenesis is not yet known. In our study, we revealed that secreted ORF8 protein mimics host IL-17 to activate IL-17 receptors A and C (IL-17RA/C) and induces a significantly stronger inflammatory response than host IL-17A, providing molecular insights into the role of ORF8 in COVID-19 pathogenesis and serving as a potential therapeutic target.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation/genetics , Interleukin-17/genetics , Open Reading Frames , SARS-CoV-2/genetics , Viral Proteins/metabolism
11.
J Allergy Clin Immunol ; 149(2): 488-516.e9, 2022 02.
Article in English | MEDLINE | ID: mdl-34848210

ABSTRACT

Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.


Subject(s)
Asthma/drug therapy , Precision Medicine , Advisory Committees , Asthma/diagnosis , Biomarkers , Clinical Protocols , Clinical Trials, Phase II as Topic , Humans , Research Design , Severity of Illness Index , Tomography, X-Ray Computed
12.
Cell Rep Med ; 2(11): 100453, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34723226

ABSTRACT

While pregnancy increases the risk for severe COVID-19, the clinical and immunological implications of COVID-19 on maternal-fetal health remain unknown. Here, we present the clinical and immunological landscapes of 93 COVID-19 mothers and 45 of their SARS-CoV-2-exposed infants through comprehensive serum proteomics profiling for >1,400 cytokines of their peripheral and cord blood specimens. Prenatal SARS-CoV-2 infection triggers NF-κB-dependent proinflammatory immune activation. Pregnant women with severe COVID-19 show increased inflammation and unique IFN-λ antiviral signaling, with elevated levels of IFNL1 and IFNLR1. Furthermore, SARS-CoV-2 infection re-shapes maternal immunity at delivery, altering the expression of pregnancy complication-associated cytokines, inducing MMP7, MDK, and ESM1 and reducing BGN and CD209. Finally, COVID-19-exposed infants exhibit induction of T cell-associated cytokines (IL33, NFATC3, and CCL21), while some undergo IL-1ß/IL-18/CASP1 axis-driven neonatal respiratory distress despite birth at term. Our findings demonstrate COVID-19-induced immune rewiring in both mothers and neonates, warranting long-term clinical follow-up to mitigate potential health risks.


Subject(s)
COVID-19/immunology , Cytokines/blood , Inflammation , Proteomics , Adolescent , Adult , COVID-19/blood , COVID-19/metabolism , Female , Humans , Infant, Newborn , Mothers , Pregnancy , Serum/metabolism , Young Adult
13.
Nutrients ; 13(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805960

ABSTRACT

Background: Asthma physiology affects respiratory function and inflammation, factors that may contribute to elevated resting energy expenditure (REE) and altered body composition. Objective: We hypothesized that asthma would present with elevated REE compared to weight-matched healthy controls. Methods: Adults with asthma (n = 41) and healthy controls (n = 20) underwent indirect calorimetry to measure REE, dual-energy X-ray absorptiometry (DEXA) to measure body composition, and 3-day diet records. Clinical assessments included spirometry, fractional exhaled nitric oxide (FENO), and a complete blood count. Results: Asthmatics had greater REE than controls amounting to an increase of ~100 kcals/day, even though body mass index (BMI) and body composition were similar between groups. Inclusion of asthma status and FENO in validated REE prediction equations led to improved estimates. Further, asthmatics had higher white blood cell (control vs. asthma (mean ± SD): 4.7 ± 1.1 vs. 5.9 ± 1.6, p < 0.01) and neutrophil (2.8 ± 0.9 vs. 3.6 ± 1.4, p = 0.02) counts that correlated with REE (both p < 0.01). Interestingly, despite higher REE, asthmatics reported consuming fewer calories (25.1 ± 7.5 vs. 20.3 ± 6.0 kcals/kg/day, p < 0.01) and carbohydrates than controls. Conclusion: REE is elevated in adults with mild asthma, suggesting there is an association between REE and the pathophysiology of asthma.


Subject(s)
Asthma/physiopathology , Basal Metabolism/physiology , Absorptiometry, Photon , Adult , Body Composition/physiology , Body Mass Index , Calorimetry, Indirect , Cross-Sectional Studies , Female , Humans , Male
14.
J Allergy Clin Immunol ; 147(5): 1594-1601, 2021 05.
Article in English | MEDLINE | ID: mdl-33667479

ABSTRACT

Severe asthma accounts for almost half the cost associated with asthma. Severe asthma is driven by heterogeneous molecular mechanisms. Conventional clinical trial design often lacks the power and efficiency to target subgroups with specific pathobiological mechanisms. Furthermore, the validation and approval of new asthma therapies is a lengthy process. A large proportion of that time is taken by clinical trials to validate asthma interventions. The National Institutes of Health Precision Medicine in Severe and/or Exacerbation Prone Asthma (PrecISE) program was established with the goal of designing and executing a trial that uses adaptive design techniques to rapidly evaluate novel interventions in biomarker-defined subgroups of severe asthma, while seeking to refine these biomarker subgroups, and to identify early markers of response to therapy. The novel trial design is an adaptive platform trial conducted under a single master protocol that incorporates precision medicine components. Furthermore, it includes innovative applications of futility analysis, cross-over design with use of shared placebo groups, and early futility analysis to permit more rapid identification of effective interventions. The development and rationale behind the study design are described. The interventions chosen for the initial investigation and the criteria used to identify these interventions are enumerated. The biomarker-based adaptive design and analytic scheme are detailed as well as special considerations involved in the final trial design.


Subject(s)
Asthma , Biomarkers , Precision Medicine , Randomized Controlled Trials as Topic , Humans , Research Design
15.
Mitochondrion ; 58: 303-310, 2021 05.
Article in English | MEDLINE | ID: mdl-33513442

ABSTRACT

Mitochondrial dysfunction has emerged to be associated with a broad spectrum of diseases, and there is an increasing demand for accurate detection of mitochondrial DNA (mtDNA) variants. Whole genome sequencing (WGS) has been the dominant sequencing approach to identify genetic variants in recent decades, but most studies focus on variants on the nuclear genome. Whole genome sequencing is also costly and time consuming. Sequencing specifically targeted for mtDNA is commonly used in the diagnostic settings and has lower costs. However, there is a lack of pairwise comparisons between these two sequencing approaches for calling mtDNA variants on a population basis. In this study, we compared WGS and mtDNA-targeted sequencing (targeted-seq) in analyzing mitochondrial DNA from 1499 participants recruited into the Severe Asthma Research Program (SARP). Our study reveals that targeted-sequencing and WGS have comparable capacity to determine genotypes and to call haplogroups and homoplasmies on mtDNA. However, there exists a large variability in calling heteroplasmies, especially for low-frequency heteroplasmies, which indicates that investigators should be cautious about heteroplasmies acquired from different sequencing methods. Further research is highly desired to improve variant detection methods for mitochondrial DNA.


Subject(s)
DNA, Mitochondrial/genetics , Whole Genome Sequencing/methods , Humans
16.
Sci Rep ; 9(1): 18623, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819116

ABSTRACT

Pulmonary arterial endothelial cells (PAEC) are mechanistically linked to origins of pulmonary arterial hypertension (PAH). Here, global proteomics and phosphoproteomics of PAEC from PAH (n = 4) and healthy lungs (n = 5) were performed using LC-MS/MS to confirm known pathways and identify new areas of investigation in PAH. Among PAH and control cells, 170 proteins and 240 phosphopeptides were differentially expressed; of these, 45 proteins and 18 phosphopeptides were located in the mitochondria. Pathologic pathways were identified with integrative bioinformatics and human protein-protein interactome network analyses, then confirmed with targeted proteomics in PAH PAEC and non-targeted metabolomics and targeted high-performance liquid chromatography of metabolites in plasma from PAH patients (n = 30) and healthy controls (n = 12). Dysregulated pathways in PAH include accelerated one carbon metabolism, abnormal tricarboxylic acid (TCA) cycle flux and glutamate metabolism, dysfunctional arginine and nitric oxide pathways, and increased oxidative stress. Functional studies in cells confirmed abnormalities in glucose metabolism, mitochondrial oxygen consumption, and production of reactive oxygen species in PAH. Altogether, the findings indicate that PAH is typified by changes in metabolic pathways that are primarily found in mitochondria.


Subject(s)
Peptides/metabolism , Phosphoproteins/metabolism , Proteomics/methods , Pulmonary Arterial Hypertension/metabolism , Adult , Arginine/metabolism , Citric Acid Cycle , Computational Biology , Endothelial Cells/metabolism , Female , Glucose/metabolism , Humans , Lung/metabolism , Lung Transplantation , Male , Metabolomics , Middle Aged , Mitochondria/metabolism , Nitric Oxide/metabolism , Oxidative Stress , Protein Interaction Mapping , Proteome , Reactive Oxygen Species/metabolism
17.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847126

ABSTRACT

Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.


Subject(s)
Familial Primary Pulmonary Hypertension/enzymology , N-Acetylglucosaminyltransferases/metabolism , Neovascularization, Pathologic/enzymology , Adult , Animals , Coculture Techniques , Enzyme Inhibitors/pharmacology , Familial Primary Pulmonary Hypertension/pathology , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor A/biosynthesis
18.
Respir Res ; 19(1): 210, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30376852

ABSTRACT

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is a distinct eosinophilic phenotype of severe asthma with accompanying chronic rhinosinusitis, nasal polyposis, and hypersensitivity to aspirin. Urinary 3-bromotyrosine (uBrTyr) is a noninvasive marker of eosinophil-catalyzed protein oxidation. The lack of in vitro diagnostic test makes the diagnosis of AERD difficult. We aimed to determine uBrTyr levels in patients with AERD (n = 240) and aspirin-tolerant asthma (ATA) (n = 226) and to assess whether its addition to urinary leukotriene E4 (uLTE4) levels and blood eosinophilia can improve the prediction of AERD diagnosis. METHODS: Clinical data, spirometry and blood eosinophilis were evaluated. UBrTyr and uLTE4 levels were measured in urine by HPLC and ELISA, respectively. RESULTS: Both groups of asthmatics (AERD, n = 240; ATA, n = 226) had significantly higher uBrTyr, uLTE4 levels, and blood eosinophils than healthy controls (HC) (n = 71) (p < 0.05). ULTE4 levels and blood eosinophils were significantly higher in AERD as compared to ATA (p = 0.004, p < 0.0001, respectively). whereas uBrTyr levels were not significantly different between both asthma phenotypes (p = 0.34). Asthmatics with high levels of uBrTyr (> 0.101 ng/mg Cr), uLTE4 levels (> 800 pg/mg Cr) and blood eosinophils (> 300 cells/ul) were 7 times more likely to have AERD.. However, uBrTyr did not increase the benefit for predicting AERD when uLTE4 and blood eosinophils were already taken into account (p = 0.57). CONCLUSION: UBrTyr levels are elevated both in AERD and ATA as compared to HC, but they could not differentiate between these asthma phenotypes suggesting a similar eosinophilic activation. The addition of uBrTyr to elevated uLTE4 levels and blood eosinophils did not statistically enhance the prediction of AERD diagnosis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Asthma, Aspirin-Induced/diagnosis , Asthma, Aspirin-Induced/urine , Tyrosine/analogs & derivatives , Adult , Asthma, Aspirin-Induced/blood , Biomarkers/urine , Eosinophils/metabolism , Female , Humans , Male , Middle Aged , Tyrosine/urine
19.
J Allergy Clin Immunol Pract ; 6(2): 545-554.e4, 2018.
Article in English | MEDLINE | ID: mdl-28866107

ABSTRACT

BACKGROUND: The effect of age on asthma severity is poorly understood. OBJECTIVES: The objective of this study was to compare the baseline features of severe and nonsevere asthma in the Severe Asthma Research Program (SARP) III cohort, and examine in cross section the effects of age on those features. METHODS: SARP III is a National Institutes of Health/National Heart Lung Blood Institute multisite 3-year cohort study conducted to investigate mechanisms of severe asthma. The sample included 188 children (111 severe, 77 nonsevere) and 526 adults (313 severe, 213 nonsevere) characterized for demographic features, symptoms, health care utilization, lung function, and inflammatory markers compared by age and severity. RESULTS: Compared with children with nonsevere asthma, children with severe asthma had more symptoms and more historical exacerbations, but no difference in body weight, post-bronchodilator lung function, or inflammatory markers. After childhood, and increasing with age, the cohort had a higher proportion of women, less allergen sensitization, and overall fewer blood eosinophils. Enrollment of participants with severe asthma was highest in middle-aged adults, who were older, more obese, with greater airflow limitation and higher blood eosinophils, but less allergen sensitization than adults with nonsevere asthma. CONCLUSIONS: The phenotypic features of asthma differ by severity and with advancing age. With advancing age, patients with severe asthma are more obese, have greater airflow limitation, less allergen sensitization, and variable type 2 inflammation. Novel mechanisms besides type 2 inflammatory pathways may inform the severe asthma phenotype with advancing age.


Subject(s)
Asthma , Adolescent , Adult , Age Factors , Aged , Asthma/drug therapy , Asthma/immunology , Asthma/physiopathology , Bronchodilator Agents/therapeutic use , Child , Cohort Studies , Female , Humans , Immunoglobulin E/blood , Male , Middle Aged , Obesity/drug therapy , Obesity/immunology , Obesity/physiopathology , Patient Acceptance of Health Care , Severity of Illness Index , Young Adult
20.
Front Cardiovasc Med ; 5: 180, 2018.
Article in English | MEDLINE | ID: mdl-30619887

ABSTRACT

Background: The therapeutic benefits of ß-blockers are well established in left heart failure. The Pulmonary Arterial Hypertension Treatment with Carvedilol for Heart Failure [PAHTCH] study showed safety and possible benefit of carvedilol in pulmonary arterial hypertension (PAH) associated right heart failure over 6 months. This study aims at evaluating the short-term cardiovascular effects and early mechanistic biomarkers of carvedilol therapy. Methods: Thirty patients with pulmonary hypertension (PH) received low dose carvedilol (3.125 mg twice daily) for 1 week prior to randomization to placebo, low-dose, or dose-escalating carvedilol therapy. Echocardiography was performed at baseline and 1 week. Exercise capacity was assessed by 6 min walk distance (6MWD). The L-arginine/nitric oxide pathway and other biological markers of endothelial function were measured. Results: All participants tolerated 1 week of carvedilol without adverse effects. After 1 week of carvedilol, 6MWD and heart rate at peak exercise did not vary (both p > 0.1). Heart rate at rest and 1 min post walk dropped significantly (both p < 0.05) with a trend for increase in heart rate recovery (p = 0.08). Right ventricular systolic pressure (RVSP) decreased by an average of 13 mmHg (p = 0.002). Patients who had a decrease in RVSP of more than 10 mm Hg were defined as responders (n = 17), and those with a lesser drop as non-responders (n = 13). Responders had a significant drop in pulmonary vascular resistance (PVR) after 1 week of carvedilol (p = 0.004). In addition, responders had a greater decrease in heart rate at rest and 1 min post walk compared to non-responders (both p < 0.05). Responders had higher plasma arginine and global bioavailability of arginine at baseline compared to non-responders (p = 0.03 and p = 0.05, respectively). After 1 week of carvedilol, responders had greater increase in urinary nitrate (p = 0.04). Responders treated with carvedilol had a sustained drop in RVSP and PVR after 6 months of carvedilol with no change in cardiac output. Conclusions: Low-dose carvedilol for 1 week can potentially identify a PH responder phenotype that may benefit from ß-blockers that is associated with less endothelial dysfunction. Clinical Trial Registration: http://www.clinicaltrials.gov. identifier: NCT01586156.

SELECTION OF CITATIONS
SEARCH DETAIL
...