Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 7272, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179532

ABSTRACT

RNAs are often modified to invoke new activities. While many modifications are limited in frequency, restricted to non-coding RNAs, or present only in select organisms, 5-methylcytidine (m5C) is abundant across diverse RNAs and fitness-relevant across Domains of life, but the synthesis and impacts of m5C have yet to be fully investigated. Here, we map m5C in the model hyperthermophile, Thermococcus kodakarensis. We demonstrate that m5C is ~25x more abundant in T. kodakarensis than human cells, and the m5C epitranscriptome includes ~10% of unique transcripts. T. kodakarensis rRNAs harbor tenfold more m5C compared to Eukarya or Bacteria. We identify at least five RNA m5C methyltransferases (R5CMTs), and strains deleted for individual R5CMTs lack site-specific m5C modifications that limit hyperthermophilic growth. We show that m5C is likely generated through partial redundancy in target sites among R5CMTs. The complexity of the m5C epitranscriptome in T. kodakarensis argues that m5C supports life in the extremes.


Subject(s)
Cytidine , Methyltransferases , Thermococcus , Transcriptome , Thermococcus/genetics , Thermococcus/metabolism , Thermococcus/enzymology , Methyltransferases/metabolism , Methyltransferases/genetics , Cytidine/metabolism , Cytidine/analogs & derivatives , Cytidine/genetics , Humans , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics
2.
Mol Cell ; 84(5): 854-866.e7, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38402612

ABSTRACT

Deaminases have important uses in modification detection and genome editing. However, the range of applications is limited by the small number of characterized enzymes. To expand the toolkit of deaminases, we developed an in vitro approach that bypasses a major hurdle with their toxicity in cells. We assayed 175 putative cytosine deaminases on a variety of substrates and found a broad range of activity on double- and single-stranded DNA in various sequence contexts, including CpG-specific deaminases and enzymes without sequence preference. We also characterized enzyme selectivity across six DNA modifications and reported enzymes that do not deaminate modified cytosines. The detailed analysis of diverse deaminases opens new avenues for biotechnological and medical applications. As a demonstration, we developed SEM-seq, a non-destructive single-enzyme methylation sequencing method using a modification-sensitive double-stranded DNA deaminase. The streamlined protocol enables accurate, base-resolution methylome mapping of scarce biological material, including cell-free DNA and 10 pg input DNA.


Subject(s)
Cytosine Deaminase , Epigenome , DNA/genetics , Cytosine , DNA, Single-Stranded/genetics , Cytidine Deaminase/genetics
3.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-38030223

ABSTRACT

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.


Subject(s)
Algorithms , RNA , Animals , Humans , RNA/genetics , Methylation , Sequence Analysis, RNA
4.
PLoS One ; 18(11): e0291267, 2023.
Article in English | MEDLINE | ID: mdl-37939088

ABSTRACT

The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or 'PUS' enzymes include those that rely on guide RNA molecules and others that function as 'stand-alone' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.


Subject(s)
Intramolecular Transferases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , RNA, Messenger/metabolism , RNA/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , RNA, Transfer/metabolism , Pseudouridine/metabolism
5.
ACS Pharmacol Transl Sci ; 6(11): 1692-1702, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37974627

ABSTRACT

The N7-methyl guanosine cap structure is an essential 5' end modification of eukaryotic mRNA. It plays a critical role in many aspects of the life cycle of mRNA, including nuclear export, stability, and translation. Equipping synthetic transcripts with a 5' cap is paramount to the development of effective mRNA vaccines and therapeutics. Here, we report a simple and flexible workflow to selectively isolate and analyze structural features of the 5' end of an mRNA by means of DNA probe-directed enrichment with site-specific single-strand endoribonucleases. Specifically, we showed that the RNA cleavage by site-specific RNases can be effectively steered by a complementary DNA probe to recognition sites downstream of the probe-hybridized region, utilizing a flexible range of DNA probe designs. We applied this approach using human RNase 4 to isolate well-defined cleavage products from the 5' end of diverse uridylated and N1-methylpseudouridylated mRNA 5' end transcript sequences. hRNase 4 increases the precision of the RNA cleavage, reducing product heterogeneity while providing comparable estimates of capped products and their intermediaries relative to the widely used RNase H. Collectively, we demonstrated that this workflow ensures well-defined and predictable 5' end cleavage products suitable for analysis and relative quantitation of synthetic mRNA 5' cap structures by UHPLC-MS/MS.

6.
Nat Genet ; 55(9): 1448-1461, 2023 09.
Article in English | MEDLINE | ID: mdl-37679419

ABSTRACT

Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Genome-Wide Association Study , Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Colon
7.
NAR Cancer ; 5(2): zcad022, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37206360

ABSTRACT

Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.

8.
Bio Protoc ; 12(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36245800

ABSTRACT

Nucleic acids in living organisms are more complex than the simple combinations of the four canonical nucleotides. Recent advances in biomedical research have led to the discovery of numerous naturally occurring nucleotide modifications and enzymes responsible for the synthesis of such modifications. In turn, these enzymes can be leveraged towards toolkits for DNA and RNA manipulation for epigenetic sequencing or other biotechnological applications. Here, we present the protocol to obtain purified 5-hydroxymethylcytosine carbamoyltransferase enzymes and the associated assays to convert 5-hydroxymethylcytosine to 5-carbamoyloxymethylcytosine in vitro . We include detailed assays using DNA, RNA, and single nucleotide/deoxynucleotide as substrates. These assays can be combined with downstream applications for genetic/epigenetic regulatory mechanism studies and next-generation sequencing purposes.

9.
PLoS One ; 17(10): e0276315, 2022.
Article in English | MEDLINE | ID: mdl-36251663

ABSTRACT

The luciferin sulfokinase (coelenterazine sulfotransferase) of Renilla was previously reported to activate the storage form, luciferyl sulfate (coelenterazine sulfate) to luciferin (coelenterazine), the substrate for the luciferase bioluminescence reaction. The gene coding for the coelenterazine sulfotransferase has not been identified. Here we used a combined proteomic/transcriptomic approach to identify and clone the sulfotransferase cDNA. Multiple isoforms of coelenterazine sulfotransferase were identified from the anthozoan Renilla muelleri by intersecting its transcriptome with the LC-MS/MS derived peptide sequences of coelenterazine sulfotransferase purified from Renilla. Two of the isoforms were expressed in E. coli, purified, and partially characterized. The encoded enzymes display sulfotransferase activity that is comparable to that of the native sulfotransferase isolated from Renilla reniformis that was reported in 1970. The bioluminescent assay for sensitive detection of 3'-phosphoadenosine 5'-phosphate (PAP) using the recombinant sulfotransferase is demonstrated.


Subject(s)
Escherichia coli , Proteomics , Animals , Arylsulfotransferase , Chromatography, Liquid , DNA, Complementary , Escherichia coli/genetics , Imidazoles , Luciferases/genetics , Luminescent Measurements , Pyrazines , Renilla/genetics , Sulfates , Sulfotransferases/genetics , Tandem Mass Spectrometry
10.
Commun Biol ; 5(1): 999, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130997

ABSTRACT

Detection of nucleic acid amplification has typically required sophisticated laboratory instrumentation, but as the amplification techniques have moved away from the lab, complementary detection techniques have been implemented to facilitate point-of-care, field, and even at-home applications. Simple visual detection approaches have been widely used for isothermal amplification methods, but have generally displayed weak color changes or been highly sensitive to sample and atmospheric effects. Here we describe the use of pyridylazophenol dyes and binding to manganese ion to produce a strong visible color that changes in response to nucleic acid amplification. This detection approach is easily quantitated with absorbance, rapidly and clearly visible by eye, robust to sample effects, and notably compatible with both isothermal and PCR amplification. Nucleic acid amplification and molecular diagnostic methods are being used in an increasing number of novel applications and settings, and the ability to reliably and sensitively detect them without the need for additional instrumentation will enable even more access to these powerful techniques.


Subject(s)
Coloring Agents , Nucleic Acids , DNA/analysis , DNA/genetics , Manganese , Metals , Nucleic Acid Amplification Techniques/methods
11.
Elife ; 112022 08 12.
Article in English | MEDLINE | ID: mdl-35959885

ABSTRACT

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used colocalization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.


Subject(s)
Ribonucleoprotein, U1 Small Nuclear , Saccharomyces cerevisiae , RNA Precursors/metabolism , RNA Splice Sites , RNA Splicing , Ribonucleoprotein, U1 Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism
12.
Nucleic Acids Res ; 50(18): e106, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35871301

ABSTRACT

With the rapid growth of synthetic messenger RNA (mRNA)-based therapeutics and vaccines, the development of analytical tools for characterization of long, complex RNAs has become essential. Tandem liquid chromatography-mass spectrometry (LC-MS/MS) permits direct assessment of the mRNA primary sequence and modifications thereof without conversion to cDNA or amplification. It relies upon digestion of mRNA with site-specific endoribonucleases to generate pools of short oligonucleotides that are then amenable to MS-based sequence analysis. Here, we showed that the uridine-specific human endoribonuclease hRNase 4 improves mRNA sequence coverage, in comparison with the benchmark enzyme RNase T1, by producing a larger population of uniquely mappable cleavage products. We deployed hRNase 4 to characterize mRNAs fully substituted with 1-methylpseudouridine (m1Ψ) or 5-methoxyuridine (mo5U), as well as mRNAs selectively depleted of uridine-two key strategies to reduce synthetic mRNA immunogenicity. Lastly, we demonstrated that hRNase 4 enables direct assessment of the 5' cap incorporation into in vitro transcribed mRNA. Collectively, this study highlights the power of hRNase 4 to interrogate mRNA sequence, identity, and modifications by LC-MS/MS.


Subject(s)
Endoribonucleases/chemistry , RNA, Messenger/chemistry , Sequence Analysis, RNA/methods , Tandem Mass Spectrometry , Chromatography, Liquid/methods , DNA, Complementary , Humans , Oligonucleotides/analysis , RNA, Messenger/genetics , Ribonuclease T1/metabolism , Tandem Mass Spectrometry/methods
13.
RNA ; 28(8): 1144-1155, 2022 08.
Article in English | MEDLINE | ID: mdl-35680168

ABSTRACT

Advances in mRNA synthesis and lipid nanoparticles technologies have helped make mRNA therapeutics and vaccines a reality. The 5' cap structure is a crucial modification required to functionalize synthetic mRNA for efficient protein translation in vivo and evasion of cellular innate immune responses. The extent of 5' cap incorporation is one of the critical quality attributes in mRNA manufacturing. RNA cap analysis involves multiple steps: generation of predefined short fragments from the 5' end of the kilobase-long synthetic mRNA molecules using RNase H, a ribozyme or a DNAzyme, enrichment of the 5' cleavage products, and LC-MS intact mass analysis. In this paper, we describe (1) a framework to design site-specific RNA cleavage using RNase H; (2) a method to fluorescently label the RNase H cleavage fragments for more accessible readout methods such as gel electrophoresis or high-throughput capillary electrophoresis; (3) a simplified method for post-RNase H purification using desthiobiotinylated oligonucleotides and streptavidin magnetic beads followed by elution using water. By providing a design framework for RNase H-based RNA 5' cap analysis using less resource-intensive analytical methods, we hope to make RNA cap analysis more accessible to the scientific community.


Subject(s)
Liposomes , Ribonuclease H , Nanoparticles , RNA Caps/genetics , RNA, Messenger/metabolism , Ribonuclease H/genetics , Ribonuclease H/metabolism
14.
J Am Chem Soc ; 144(16): 7085-7088, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35416650

ABSTRACT

Tissues and organs are composed of many diverse cell types, making cell-specific gene expression profiling a major challenge. Herein we report that endogenous enzymes, unique to a cell of interest, can be utilized to enable cell-specific metabolic labeling of RNA. We demonstrate that appropriately designed "caged" nucleosides can be rendered active by serving as a substrate for cancer-cell specific enzymes to enable RNA metabolic labeling, only in cancer cells. We envision that the ease and high stringency of our approach will enable expression analysis of tumor cells in complex environments.


Subject(s)
Neoplasms , RNA , Nucleosides/metabolism , RNA/metabolism
15.
Nucleic Acids Res ; 50(6): 3475-3489, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35244721

ABSTRACT

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.


Subject(s)
COVID-19 , Nanopores , RNA, Guide, Kinetoplastida/chemistry , COVID-19/genetics , Genome, Viral/genetics , Humans , RNA Caps , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics
16.
J Biol Chem ; 298(4): 101751, 2022 04.
Article in English | MEDLINE | ID: mdl-35189146

ABSTRACT

The phosphorylated RNA polymerase II CTD interacting factor 1 (PCIF1) is a methyltransferase that adds a methyl group to the N6-position of 2'O-methyladenosine (Am), generating N6, 2'O-dimethyladenosine (m6Am) when Am is the cap-proximal nucleotide. In addition, PCIF1 has ancillary methylation activities on internal adenosines (both A and Am), although with much lower catalytic efficiency relative to that of its preferred cap substrate. The PCIF1 preference for 2'O-methylated Am over unmodified A nucleosides is due mainly to increased binding affinity for Am. Importantly, it was recently reported that PCIF1 can methylate viral RNA. Although some viral RNA can be translated in the absence of a cap, it is unclear what roles PCIF1 modifications may play in the functionality of viral RNAs. Here we show, using in vitro assays of binding and methyltransfer, that PCIF1 binds an uncapped 5'-Am oligonucleotide with approximately the same affinity as that of a cap analog (KM = 0.4 versus 0.3 µM). In addition, PCIF1 methylates the uncapped 5'-Am with activity decreased by only fivefold to sixfold compared with its preferred capped substrate. We finally discuss the relationship between PCIF1-catalyzed RNA methylation, shown here to have broader substrate specificity than previously appreciated, and that of the RNA demethylase fat mass and obesity-associated protein (FTO), which demonstrates PCIF1-opposing activities on capped RNAs.


Subject(s)
Adaptor Proteins, Signal Transducing , Nuclear Proteins , RNA Caps , Adaptor Proteins, Signal Transducing/metabolism , Adenosine/metabolism , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Nuclear Proteins/metabolism , Protein Binding , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/metabolism
17.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: mdl-35060905

ABSTRACT

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Subject(s)
DNA Methylation/physiology , Methyltransferases/metabolism , DNA, Single-Stranded/metabolism , Deoxyadenosines/metabolism , Humans , RNA/chemistry , RNA/metabolism
18.
Nucleic Acids Res ; 50(6): 3001-3017, 2022 04 08.
Article in English | MEDLINE | ID: mdl-34522950

ABSTRACT

The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.


Subject(s)
Bacteriophages , Lyases , Amino Acids/metabolism , Bacteriophages/genetics , DNA/metabolism , Thymidine/metabolism
19.
Nucleic Acids Res ; 50(1): e2, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34581823

ABSTRACT

Template-switching reverse transcription is widely used in RNA sequencing for low-input and low-quality samples, including RNA from single cells or formalin-fixed paraffin-embedded (FFPE) tissues. Previously, we identified the native eukaryotic mRNA 5' cap as a key structural element for enhancing template switching efficiency. Here, we introduce CapTS-seq, a new strategy for sequencing small RNAs that combines chemical capping and template switching. We probed a variety of non-native synthetic cap structures and found that an unmethylated guanosine triphosphate cap led to the lowest bias and highest efficiency for template switching. Through cross-examination of different nucleotides at the cap position, our data provided unequivocal evidence that the 5' cap acts as a template for the first nucleotide in reverse transcriptase-mediated post-templated addition to the emerging cDNA-a key feature to propel template switching. We deployed CapTS-seq for sequencing synthetic miRNAs, human total brain and liver FFPE RNA, and demonstrated that it consistently improves library quality for miRNAs in comparison with a gold standard template switching-based small RNA-seq kit.


Subject(s)
RNA Caps/metabolism , RNA/analysis , Sequence Analysis, RNA/methods , Humans , Tissue Fixation
20.
RNA ; 28(2): 162-176, 2022 02.
Article in English | MEDLINE | ID: mdl-34728536

ABSTRACT

Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites. In this study, we aimed to identify individual full-length human RNA isoforms among ∼4 million nanopore poly(A)-selected RNA reads. First, to identify RNA strands bearing 5' m7G caps, we exchanged the biological cap for a modified cap attached to a 45-nt oligomer. This oligomer adaptation method improved 5' end sequencing and ensured correct identification of the 5' m7G capped ends. Second, among these 5'-capped nanopore reads, we screened for features consistent with a 3' polyadenylation site. Combining these two steps, we identified 294,107 individual high-confidence full-length RNA scaffolds from human GM12878 cells, most of which (257,721) aligned to protein-coding genes. Of these, 4876 scaffolds indicated unannotated isoforms that were often internal to longer, previously identified RNA isoforms. Orthogonal data for m7G caps and open chromatin, such as CAGE and DNase-HS seq, confirmed the validity of these high-confidence RNA scaffolds.


Subject(s)
RNA Isoforms/chemistry , RNA, Messenger/chemistry , Cell Line, Tumor , Humans , Nanopore Sequencing/methods , RNA 3' Polyadenylation Signals , RNA Isoforms/genetics , RNA, Messenger/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL