Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Invest Dermatol ; 144(7): 1579-1589.e8, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38219917

ABSTRACT

Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.


Subject(s)
Afatinib , Depsipeptides , Drug Synergism , Lymphoma, T-Cell, Cutaneous , Signal Transduction , Skin Neoplasms , Depsipeptides/pharmacology , Depsipeptides/administration & dosage , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Humans , Animals , Mice , Afatinib/pharmacology , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Cell Line, Tumor , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use
2.
Cell Rep ; 39(3): 110695, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443168

ABSTRACT

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.


Subject(s)
Lymphoma, T-Cell, Peripheral , Animals , Gene Fusion , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/metabolism , Lymphoma, T-Cell, Peripheral/pathology , Macrophages/metabolism , Mice , Myosin Type I/genetics , Oncogenes , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Tumor Microenvironment/genetics
3.
J Invest Dermatol ; 141(12): 2908-2920.e7, 2021 12.
Article in English | MEDLINE | ID: mdl-34089720

ABSTRACT

Sézary syndrome is an aggressive and disseminated form of cutaneous T-cell lymphoma associated with dismal prognosis in which the histone deacetylase inhibitor romidepsin has shown remarkable activity as a single agent. However, clinical responses to romidepsin are typically transient, highlighting the need for more effective therapies. In this study, we show synergistic antilymphoma effects of romidepsin in combination with mechlorethamine, an alkylating agent, in cutaneous T-cell lymphoma cell lines and primary samples with strong antitumor effects in an in vivo model of Sézary syndrome. Mechanistically, gene expression profiling points to abrogation of Jak/signal transducer and activator of transcription (STAT) signaling as an important mediator of this interaction. Consistently, the combination of mechlorethamine plus romidepsin resulted in downregulation of STAT5 phosphorylation in romidepsin-sensitive cell lines and primary Sézary syndrome samples, but not in romidepsin-resistant tumors. Moreover, in further support of Jak/STAT signaling as a modulator of romidepsin activity in cutaneous T-cell lymphoma, treatment with romidepsin in combination with Jak inhibitors resulted in markedly increased therapeutic responses. Overall, these results support a role for romidepsin plus mechlorethamine in combination in the treatment of cutaneous T-cell lymphoma and uncover a previously unrecognized role for Jak/STAT signaling in the response to romidepsin and romidepsin-based combination therapies in Sézary syndrome.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Depsipeptides/administration & dosage , Janus Kinase Inhibitors/pharmacology , Lymphoma, T-Cell, Cutaneous/drug therapy , Mechlorethamine/administration & dosage , STAT Transcription Factors/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Drug Synergism , Humans , Mice , STAT Transcription Factors/physiology , Signal Transduction/drug effects
4.
Nat Cancer ; 2(1): 98-113, 2021 01.
Article in English | MEDLINE | ID: mdl-33928261

ABSTRACT

Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.


Subject(s)
Immunoblastic Lymphadenopathy , Lymphoma, T-Cell, Peripheral , Adaptor Proteins, Signal Transducing/genetics , Animals , Immunoblastic Lymphadenopathy/genetics , Lymphoma, T-Cell, Peripheral/genetics , Mice , NF-kappa B/genetics , Oncogenes , Signal Transduction
5.
Article in English | MEDLINE | ID: mdl-32513675

ABSTRACT

Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.


Subject(s)
Cell Transformation, Neoplastic/pathology , Lymphoma, T-Cell, Peripheral/pathology , Biomarkers , Humans , Lymphoma, T-Cell, Peripheral/genetics
6.
Cancer Discov ; 9(12): 1774-1791, 2019 12.
Article in English | MEDLINE | ID: mdl-31519704

ABSTRACT

Long-range enhancers govern the temporal and spatial control of gene expression; however, the mechanisms that regulate enhancer activity during normal and malignant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin accessibility in the regulation of MYC expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1-MYC enhancer (N-Me), a long-range T cell-specific MYC enhancer, shows dynamic changes in chromatin accessibility during T-cell specification and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells. Mechanistically, we demonstrate that GATA3-driven nucleosome eviction dynamically modulates N-Me enhancer activity and is strictly required for NOTCH1-induced T-ALL initiation and maintenance. These results directly implicate aberrant regulation of chromatin accessibility at oncogenic enhancers as a mechanism of leukemic transformation. SIGNIFICANCE: MYC is a major effector of NOTCH1 oncogenic programs in T-ALL. Here, we show a major role for GATA3-mediated enhancer nucleosome eviction as a driver of MYC expression and leukemic transformation. These results support the role of aberrant chromatin accessibility and consequent oncogenic MYC enhancer activation in NOTCH1-induced T-ALL.This article is highlighted in the In This Issue feature, p. 1631.


Subject(s)
Enhancer Elements, Genetic , GATA3 Transcription Factor/metabolism , Leukemia, T-Cell/pathology , Nucleosomes/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Jurkat Cells , Leukemia, T-Cell/genetics , Leukemia, T-Cell/metabolism , Mice , Neoplasm Transplantation , Receptor, Notch1/metabolism
7.
Cancer Cell ; 33(2): 259-273.e7, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29398449

ABSTRACT

Angioimmunoblastic T cell lymphoma (AITL) is an aggressive tumor derived from malignant transformation of T follicular helper (Tfh) cells. AITL is characterized by loss-of-function mutations in Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val) in the RHOA small GTPase. Yet, the specific role of RHOA G17V in AITL remains unknown. Expression of Rhoa G17V in CD4+ T cells induces Tfh cell specification; increased proliferation associated with inducible co-stimulator (ICOS) upregulation and increased phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase signaling. Moreover, RHOA G17V expression together with Tet2 loss resulted in development of AITL in mice. Importantly, Tet2-/-RHOA G17V tumor proliferation in vivo can be inhibited by ICOS/PI3K-specific blockade, supporting a driving role for ICOS signaling in Tfh cell transformation.


Subject(s)
DNA-Binding Proteins/genetics , Immunoblastic Lymphadenopathy/genetics , Mutation/genetics , Proto-Oncogene Proteins/genetics , T-Lymphocytes, Helper-Inducer/immunology , rhoA GTP-Binding Protein/metabolism , Animals , Biomarkers, Tumor/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Lymphoma, T-Cell/metabolism , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/metabolism
8.
Sci Transl Med ; 8(370): 370ra184, 2016 12 21.
Article in English | MEDLINE | ID: mdl-28003549

ABSTRACT

Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Receptors, Antigen, T-Cell/antagonists & inhibitors , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Autoimmune Diseases/immunology , Cell Proliferation , Cytokines/metabolism , Drug Design , Female , Healthy Volunteers , Humans , Immunosuppression Therapy , Inhibitory Concentration 50 , Ligands , Lymphocyte Activation , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Protein Domains , Receptors, Antigen, T-Cell/immunology , Signal Transduction , Surface Plasmon Resonance , T-Lymphocytes/cytology
9.
Curr Opin Hematol ; 23(4): 434-43, 2016 07.
Article in English | MEDLINE | ID: mdl-27177312

ABSTRACT

PURPOSE OF REVIEW: Once an obscure disease, recent studies have transformed our understanding of angioimmunoblastic T-cell lymphoma (AITL). In this review, we summarize new major advances in the genetics and biology of AITL. RECENT FINDINGS: Genome wide sequencing studies have dissected the repertoire of the genetic alterations driving AITL uncovering a highly recurrent Gly17Val somatic mutation in the small GTPase RHOA and major role for mutations in epigenetic regulators, such as TET2, DNMT3A and IDH2, and signaling factors (e.g., FYN and CD28). These findings support a multistep model of follicular T helper cell transformation in AITL and pinpoint novel candidates for the development of targeted therapies in this disease. SUMMARY: AITL originates from follicular T helper cells and is characterized by the presence of RHOA G17V mutation together with genetic alterations in TET2, DNMT3A, and IDH2. Research efforts now focus on the elucidation of the specific roles and interplay of these genetic alterations in the pathogenesis of AITL.


Subject(s)
Immunoblastic Lymphadenopathy/etiology , Lymphoma, T-Cell/etiology , Animals , Biomarkers, Tumor , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genomics/methods , Humans , Immunoblastic Lymphadenopathy/diagnosis , Immunoblastic Lymphadenopathy/metabolism , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/metabolism , Mutation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology , Transcriptome , rhoA GTP-Binding Protein/genetics
10.
J Autoimmun ; 55: 51-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24934597

ABSTRACT

Although FoxP3(+) regulatory T cells are key players in the maintenance of immune tolerance and autoimmunity, the lack of specific markers constitute an obstacle to their use for immunotherapy protocols. In this study, we have investigated the role of the C-type lectin receptor CD69 in the suppressor function of Tregs and maintenance of immune tolerance towards harmless inhaled antigens. We identified a novel FoxP3(+)CD69(+) Treg subset capable to maintain immune tolerance and protect to developing inflammation. Although CD69(+) and CD69(-)FoxP3(+) Tregs exist in homeostasis, only CD69-expressing Tregs express high levels of CTLA-4, ICOS, CD38 and GITR suppression-associated markers, secrete high amounts of TGFß and have potent suppressor activity. This activity is regulated by STAT5 and ERK signaling pathways and is impaired by antibody-mediated down-regulation of CD69 expression. Moreover, immunotherapy with FoxP3(+)CD69(+) Tregs restores the homeostasis in Cd69(-/-) mice, that fail to induce tolerance, and is also highly proficient in the prevention of inflammation. The identification of the FoxP3(+)CD69(+) Treg subset paves the way toward the development of new therapeutic strategies to control immune homeostasis and autoimmunity.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Gene Expression Regulation/immunology , Immune Tolerance/physiology , Lectins, C-Type/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, CD/genetics , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Gene Expression Regulation/genetics , Lectins, C-Type/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
11.
Trends Mol Med ; 19(10): 625-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23954168

ABSTRACT

Early studies described CD69 as a leukocyte activation marker, and suggested its involvement in the activation of different leukocyte subsets as well as in the pathogenesis of chronic inflammation. However, recent investigations have showed that CD69 knockout mice exhibit an enhanced or reduced susceptibility to different experimental models of inflammatory diseases, including those mediated by T helper 17 (Th17) lymphocytes. In this regard, the expression of CD69, both in Th17 lymphocytes and by a subset of regulatory T cells, has an important role in the control of the immune response and the inflammatory phenomenon. Therefore, different evidence indicates that CD69 exerts a complex immunoregulatory role in humans, and that it could be considered as a target molecule for the therapy of immune-mediated diseases.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Inflammation/immunology , Inflammation/pathology , Lectins, C-Type/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Humans , Hypersensitivity/immunology , Hypersensitivity/pathology , Immunomodulation/immunology , T-Lymphocytes, Regulatory/immunology
12.
J Clin Invest ; 123(1): 164-78, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202732

ABSTRACT

Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Peptide Chain Elongation, Translational/drug effects , Peptide Elongation Factor 2/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , MAP Kinase Signaling System/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/genetics , Mitogen-Activated Protein Kinase 13/metabolism , Peptide Chain Elongation, Translational/genetics , Peptide Elongation Factor 2/genetics , Tumor Necrosis Factor-alpha/genetics
13.
J Allergy Clin Immunol ; 126(2): 355-65, 365.e1-3, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20621339

ABSTRACT

BACKGROUND: Allergic diseases have a major health care impact in industrialized countries. The development of these diseases is influenced by exposure to allergen and to immunological and genetic factors. However, the molecular mechanisms underlying the inflammatory response that triggers allergy are not well defined. OBJECTIVE: We have investigated the role of the leukocyte activation antigen CD69 in the regulation of two allergic diseases, asthma and contact dermatitis. METHODS: Analysis of two models of allergic diseases in CD69 knockout and wild-type mice: ovalbumin-induced allergic airway inflammation (BALB/c genetic background) and contact hypersensitivity to oxazolone (C57BL/6J genetic background). RESULTS: CD69 deficiency dramatically enhanced the inflammatory response in the ovalbumin-induced asthma model of antigen-induced airway allergy. CD69 knockout mice showed exacerbated pulmonary eosinophil recruitment, high vascular cell adhesion molecule 1 expression levels in lung vasculature, and enhanced T(H)2 and T(H)17 cytokines in the bronchoalveolar space and lung tissue. In the hapten-induced cutaneous contact hypersensitivity model, both CD69 deficiency and treatment with anti-CD69 mAb increased inflammation. Treatment with contact allergens induced enhanced T(H)1 and T(H)17 responses in CD69 deficient mice, and neutralizing anti-IL-17 antibodies reduced skin inflammation. In both experimental systems, adoptive transfer of lymph node cells from CD69 knockout mice increased the inflammatory response in recipient mice. CONCLUSION: These results demonstrate that the early activation receptor CD69 is an intrinsic modulator of immune allergic processes through the negative regulation of allergen-induced T-cell effector responses.


Subject(s)
Asthma/immunology , Dermatitis, Allergic Contact/immunology , Eosinophils/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Adoptive Transfer , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Asthma/genetics , Asthma/pathology , Dermatitis, Allergic Contact/genetics , Dermatitis, Allergic Contact/pathology , Disease Models, Animal , Eosinophils/pathology , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-17/antagonists & inhibitors , Interleukin-17/genetics , Interleukin-17/immunology , Lectins, C-Type , Lung/immunology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Th1 Cells/pathology , Th2 Cells/pathology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
15.
Mol Immunol ; 45(15): 3896-901, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18676023

ABSTRACT

The implication of the STAT6 transcription factor in several human diseases makes the regulation of its activity a topic of great biological interest. The activation of this transcription factor is tightly regulated by kinases, phosphatases, and proteases. The initial aim of this study was to investigate the utility of protease inhibitors in controlling STAT6 activation. Among all inhibitors analyzed, n-alpha-tosyl-L-phenylalanine-chloromethyl ketone (TPCK) was found to inhibit the IL-4-induced STAT6 activation. Unexpectedly, this inhibition was accompanied by a loss of STAT6 protein. Thus, TPCK promoted the loss of STAT6 by a mechanism sensitive to the serine-protease inhibitor 4-(2-aminoetyl)-benzenesulfonyl fluoride. However, the effects of TPCK seemed not to be mediated by its protease inhibitory activity since multiple protease inhibitors tested had no effect on STAT6 expression. The results found suggest that the effect of TPCK was mediated by its alkylating activity. Thus, cysteine reactive and thiol antioxidant compounds prevented the loss of STAT6 induced by TPCK. The reactivity of thiol groups on STAT6 was moreover demonstrated with biotinylated sulfhydryl-reactive compounds. Analysis of other signaling molecules indicated that STAT5, but not other STATs, Shc, or c-Rel, was also affected by TPCK, suggesting a common downregulatory mechanism for STAT6 and STAT5. These results reveal a novel mechanism of action of TPCK in inducing a selective loss of STAT proteins. These findings may have implications for diseases in which STAT proteins are involved.


Subject(s)
Antioxidants/pharmacology , Protease Inhibitors/pharmacology , STAT6 Transcription Factor/metabolism , Tosylphenylalanyl Chloromethyl Ketone/pharmacology , Animals , Cell Line , Mice , Proto-Oncogene Proteins c-rel/physiology , STAT5 Transcription Factor/metabolism , Shc Signaling Adaptor Proteins/physiology , Signal Transduction , Sulfones/pharmacology
16.
J Immunol ; 179(6): 3881-7, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17785825

ABSTRACT

IL-4 is involved in several human diseases including allergies, autoimmunity, and cancer. Its effects are mainly mediated through the transcription factor STAT6. Therefore, investigation of compounds that regulate STAT6 activation is of great interest for these diseases. Natural polyphenols are compounds reported to have therapeutic properties in diseases involving IL-4 and STAT6. The aim of this study was to investigate the effect of these compounds in the activation of this transcription factor. We found that in hemopoietic cells from human and mouse origin, some flavonoids were able to inhibit the activation of STAT6 by IL-4. To identify molecular mechanisms, we focused on kaempferol, the compound that showed the greatest inhibitory effect with the lowest cell toxicity. Treatment of cells with kaempferol did not affect activation of Src kinase by IL-4 but did prevent the phosphorylation of JAK1 and JAK3. Further enzymatic analysis demonstrated that kaempferol blocked the in vitro phosphorylation activity of JAK3 without affecting JAK1, suggesting that it specifically targeted JAK3 activity. Accordingly, kaempferol had no effect on STAT6 activation in nonhemopoietic cell lines lacking JAK3, supporting its selective inhibition of IL-4 responses through type I receptors expressing JAK3 but not type II lacking this kinase. The inhibitory effect of kaempferol was also observed in IL-2 but not IL-3-mediated responses and correlated with the inhibition of MLC proliferation. These findings reveal the potential use of kaempferol as a tool for selectively controlling cell responses to IL-4 and, in general, JAK3-dependent responses.


Subject(s)
Interleukin-4/antagonists & inhibitors , Interleukin-4/physiology , Janus Kinase 3/antagonists & inhibitors , Kaempferols/pharmacology , Protein Kinase Inhibitors/pharmacology , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Delivery Systems , HL-60 Cells , Humans , Janus Kinase 1/metabolism , Janus Kinase 3/biosynthesis , Janus Kinase 3/deficiency , Janus Kinase 3/genetics , Kaempferols/toxicity , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Phosphorylation/drug effects , Protein Kinase Inhibitors/toxicity , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...