Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L805-L815, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31577161

ABSTRACT

Histological observations in human pulmonary arterial hypertension (PAH) suggest a link between plexiform lesions and pulmonary supernumerary arteries. Pulmonary microvascular endothelial cells are characterized as hyperproliferative and progenitor-like. This study investigates the hypothesis that aneurysm-type plexiform lesions form in pulmonary supernumerary arteries because of their anatomical properties and endothelial characteristics similar to pulmonary microvascular endothelial cells. To induce PAH, rats were injected with Sugen5416, and exposed to hypoxia (10% O2) for 3 days (early stage) or 3 wk (mid-stage), or 3 wk of hypoxia with an additional 10 wk of normoxia (late-stage PAH). We examined morphology of pulmonary vasculature and vascular remodeling in lung serial sections from PAH and normal rats. Aneurysm-type plexiform lesions formed in small side branches of pulmonary arteries with morphological characteristics similar to supernumerary arteries. Over the course of PAH development, the number of Ki67-positive cells increased in small pulmonary arteries, including supernumerary arteries, whereas the number stayed consistently low in large pulmonary arteries. The increase in Ki67-positive cells was delayed in supernumerary arteries compared with small pulmonary arteries. In late-stage PAH, ~90% of small unconventional side branches that were likely to be supernumerary arteries were nearly closed. These results support our hypothesis that supernumerary arteries are the predominant site for aneurysm-type plexiform lesions in Sugen5416/hypoxia/normoxia-exposed PAH rats partly because of the combination of their unique anatomical properties and the hyperproliferative potential of endothelial cells. We propose that the delayed and extensive occlusive lesion formation in supernumerary arteries could be a preventive therapeutic target in patients with PAH.


Subject(s)
Aneurysm/pathology , Cell Proliferation , Disease Models, Animal , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/prevention & control , Pulmonary Artery/pathology , Vascular Remodeling , Aneurysm/etiology , Animals , Male , Pulmonary Arterial Hypertension/complications , Rats , Rats, Sprague-Dawley
2.
J Appl Physiol (1985) ; 126(2): 494-501, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30571293

ABSTRACT

Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics.


Subject(s)
Capillaries/physiology , Erythrocytes/physiology , Hemodynamics , Lung/blood supply , Microcirculation , Models, Cardiovascular , Pulmonary Circulation , Animals , Blood Flow Velocity , Dogs , Fractals , Male , Microscopy, Video , Models, Animal , Nonlinear Dynamics , Time Factors , Tissue Fixation
3.
Basic Res Cardiol ; 113(5): 32, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29992382

ABSTRACT

Patients with acute myocardial infarction receive a P2Y12 receptor antagonist prior to reperfusion, a treatment that has reduced, but not eliminated, mortality, or heart failure. We tested whether the caspase-1 inhibitor VX-765 given at reperfusion (a requirement for clinical use) can provide sustained reduction of infarction and long-term preservation of ventricular function in a pre-clinical model of ischemia/reperfusion that had been treated with a P2Y12 receptor antagonist. To address, the hypothesis open-chest rats were subjected to 60-min left coronary artery branch occlusion/120-min reperfusion. Vehicle or inhibitors were administered intravenously immediately before reperfusion. With vehicle only, 60.3 ± 3.8% of the risk zone suffered infarction. Ticagrelor, a P2Y12 antagonist, and VX-765 decreased infarct size to 42.8 ± 3.3 and 29.2 ± 4.9%, respectively. Combining ticagrelor with VX-765 further decreased infarction to 17.5 ± 2.3%. Similar to recent clinical trials, combining ticagrelor and ischemic postconditioning did not result in additional cardioprotection. VX-765 plus another P2Y12 antagonist, cangrelor, also decreased infarction and preserved ventricular function when reperfusion was increased to 3 days. In addition, VX-765 reduced infarction in blood-free, isolated rat hearts indicating at least a portion of injurious caspase-1 activation originates in cardiac tissue. While the pro-drug VX-765 only protected isolated hearts when started prior to ischemia, its active derivative VRT-043198 provided the same amount of protection when started at reperfusion, indicating that even in blood-free hearts, caspase-1 appears to exert its injury only at reperfusion. Moreover, VX-765 decreased circulating IL-1ß, prevented loss of cardiac glycolytic enzymes, preserved mitochondrial complex I activity, and decreased release of lactate dehydrogenase, a marker of pyroptosis. Our results are the first demonstration of a clinical-grade drug given at reperfusion providing additional, sustained infarct size reduction when added to a P2Y12 receptor antagonist.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Caspase 1/drug effects , Dipeptides/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Purinergic P2 Receptor Antagonists/pharmacology , Receptors, Purinergic P2/drug effects , Ticagrelor/pharmacology , Ventricular Function, Left/drug effects , para-Aminobenzoates/pharmacology , Adenosine Monophosphate/pharmacology , Animals , Caspase 1/metabolism , Disease Models, Animal , Drug Therapy, Combination , Energy Metabolism/drug effects , Interleukin-1beta/blood , Isolated Heart Preparation , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Rats, Sprague-Dawley , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Signal Transduction/drug effects
4.
J Am Coll Surg ; 226(4): 687-693, 2018 04.
Article in English | MEDLINE | ID: mdl-29409904

ABSTRACT

BACKGROUND: Diagnosing the extremes of superficial burns and full-thickness burns is straightforward. It is in the middle ground of partial-thickness burns where the diagnostic difficulties emerge; it can take up to 3 to 5 days for signs of healing to appear. We hypothesize that cooling partial-thickness burns and tracking the rate of rewarming will immediately reflect the condition of the burn: shallow partial-thickness burns that retain cell health and blood flow will rewarm rapidly, and deeper burns with damaged microvessels will rewarm slowly. STUDY DESIGN: We enrolled 16 patients with isolated, partial-thickness burns on their extremities who were diagnosed as indeterminate by our burn surgeon. Within 24 hours after presentation, room-temperature saline was poured over the burn as a cooling challenge. An infrared camera that was sensitive to body temperature produced false-color images showing pixel-by-pixel temperatures. A time-lapse recording from the infrared camera images taken as the burn rewarmed produced a time-temperature curve that reflected the kinetics of rewarming. The outcomes variable was whether or not the patient received a skin graft, which was determined 72 hours after presentation. RESULTS: The method correctly predicted whether or not the patient required a skin graft. CONCLUSIONS: Here we report a new technique that permits determination of wound viability much earlier than clinical examination. Due to the simplicity of the method, non-experts can successfully perform the technique on the first day of the burn and make the correct diagnosis and decision to graft or not to graft.


Subject(s)
Burns/diagnosis , Thermography/methods , Adult , Cohort Studies , Female , Humans , Infrared Rays , Male , Middle Aged , Patient Selection , Skin/blood supply , Skin Transplantation , Young Adult
5.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L835-L845, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29345199

ABSTRACT

Here, we tested the hypothesis that severe pulmonary arterial hypertension impairs retrograde perfusion. To test this hypothesis, pulmonary arterial hypertension was induced in Fischer rats using a single injection of Sugen 5416 followed by 3 wk of exposure to 10% hypoxia and then 2 wk of normoxia. This Sugen 5416 and hypoxia regimen caused severe pulmonary arterial hypertension, with a Fulton index of 0.73 ± 0.07, reductions in both the pulmonary arterial acceleration time and pulmonary arterial acceleration to pulmonary arterial ejection times ratio, and extensive medial hypertrophy and occlusive neointimal lesions. Whereas the normotensive circulation accommodated large increases in forward and retrograde flow, the hypertensive circulation did not. During forward flow, pulmonary artery and double occlusion pressures rose sharply at low perfusion rates, resulting in hydrostatic edema. Pulmonary arterial hypertensive lungs possessed an absolute intolerance to retrograde perfusion, and they rapidly developed edema. Retrograde perfusion was not rescued by maximal vasodilation. Retrograde perfusion was preserved in lungs from animals treated with Sugen 5416 and hypoxia for 1 and 3 wk, in lungs from animals with a milder form of hypoxic hypertension, and in normotensive lungs subjected to high outflow pressures. Thus impaired retrograde perfusion coincides with development of severe pulmonary arterial hypertension, with advanced structural defects in the microcirculation.


Subject(s)
Hypertension, Pulmonary/etiology , Perfusion , Pulmonary Artery/physiopathology , Pulmonary Circulation/physiology , Vascular Diseases/complications , Animals , Male , Rats , Rats, Inbred F344 , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...