Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024035

ABSTRACT

The seedcorn maggot, Delia platura (Meigen), is a pest affecting many crops, including corn. The early spring emergence of adults and belowground seed damage by maggots leave no room for rescue treatments during the short growing season in New York State. Degree-day (DD) models play a crucial role in predicting insect emergence and adult peak activity and are essential for effective pest management. The current D. platura DD model was launched on the Network for Environment and Weather Applications (NEWA) in 2022, using existing scientific literature from other North American regions. The NEWA model predicted adult D. platura first emergence at an average of 471 (39°F) DD in 2022. To gain an accurate and precise understanding of D. platura adult spring emergence and activity, we used interpolated temperature data to calculate the DD for each specific location where adults were captured in the field. DD calculations were performed using the average method, setting a biofix on January 1st and a base temperature of 39°F. In 2023, overwintering adults emerged at an average of 68 DD, and in 2022, adult activity was registered at an average of 282 DD. Accurately predicting the emergence of D. platura could contribute to informing integrated pest management strategies that incorporate timing and cultural practices over chemical solutions to protect crops and the environment.

2.
Sci Rep ; 14(1): 14293, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906942

ABSTRACT

As natural landscapes are modified and converted into simplified agricultural landscapes, the community composition and interactions of organisms persisting in these modified landscapes are altered. While many studies examine the consequences of these changing interactions for crops, few have evaluated the effects on wild plants. Here, we examine how pollinator and herbivore interactions affect reproductive success for wild resident and phytometer plants at sites along a landscape gradient ranging from natural to highly simplified. We tested the direct and indirect effects of landscape composition on plant traits and reproduction mediated by insect interactions. For phytometer plants exposed to herbivores, we found that greater landscape complexity corresponded with elevated herbivore damage, which reduced total flower production but increased individual flower size. Though larger flowers increased pollination, the reduction in flowers ultimately reduced plant reproductive success. Herbivory was also higher in complex landscapes for resident plants, but overall damage was low and therefore did not have a cascading effect on floral display and reproduction. This work highlights that landscape composition directly affects patterns of herbivory with cascading effects on pollination and wild plant reproduction. Further, the absence of an effect on reproduction for resident plants suggests that they may be adapted to their local insect community.


Subject(s)
Flowers , Herbivory , Pollination , Reproduction , Flowers/physiology , Pollination/physiology , Animals , Reproduction/physiology , Agriculture/methods , Insecta/physiology , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL