Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Transl Psychiatry ; 13(1): 121, 2023 04 10.
Article En | MEDLINE | ID: mdl-37037832

Increasing lines of evidence suggest deviations from the normal early developmental trajectory could give rise to the onset of schizophrenia during adolescence and young adulthood, but few studies have investigated brain imaging changes associated with schizophrenia common variants in neonates. This study compared the brain volumes of both grey and white matter regions with schizophrenia polygenic risk scores (PRS) for 207 healthy term-born infants of European ancestry. Linear regression was used to estimate the relationship between PRS and brain volumes, with gestational age at birth, postmenstrual age at scan, ancestral principal components, sex and intracranial volumes as covariates. The schizophrenia PRS were negatively associated with the grey (ß = -0.08, p = 4.2 × 10-3) and white (ß = -0.13, p = 9.4 × 10-3) matter superior temporal gyrus volumes, white frontal lobe volume (ß = -0.09, p = 1.5 × 10-3) and the total white matter volume (ß = -0.062, p = 1.66 × 10-2). This result also remained robust when incorporating individuals of Asian ancestry. Explorative functional analysis of the schizophrenia risk variants associated with the right frontal lobe white matter volume found enrichment in neurodevelopmental pathways. This preliminary result suggests possible involvement of schizophrenia risk genes in early brain growth, and potential early life structural alterations long before the average age of onset of the disease.


Connectome , Schizophrenia , Infant, Newborn , Adolescent , Humans , Infant , Young Adult , Adult , Cross-Sectional Studies , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/metabolism , Magnetic Resonance Imaging/methods , Brain/metabolism
2.
Front Neurosci ; 16: 886772, 2022.
Article En | MEDLINE | ID: mdl-35677357

The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.

3.
Sci Rep ; 11(1): 11443, 2021 06 01.
Article En | MEDLINE | ID: mdl-34075065

Preterm birth is an extreme environmental stress associated with an increased risk of later cognitive dysfunction and mental health problems. However, the extent to which preterm birth is modulated by genetic variation remains largely unclear. Here, we test for an interaction effect between psychiatric polygenic risk and gestational age at birth on cognition at age four. Our sample comprises 4934 unrelated individuals (2066 individuals born < 37 weeks, 918 born < = 34 weeks). Genome-wide polygenic scores (GPS's) were calculated for each individual for five different psychiatric pathologies: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder. Linear regression modelling was used to estimate the interaction effect between psychiatric GPS and gestational age at birth (GA) on cognitive outcome for the five psychiatric disorders. We found a significant interaction effect between Schizophrenia GPS and GA (ß = 0.038 ± 0.013, p = 6.85 × 10-3) and Bipolar Disorder GPS and GA (ß = 0.038 ± 0.014, p = 6.61 × 10-3) on cognitive outcome. Individuals with greater genetic risk for Schizophrenia or Bipolar Disorder are more vulnerable to the adverse effects of birth at early gestational age on brain development, as assessed by cognition at age four. Better understanding of gene-environment interactions will inform more effective risk-reducing interventions for this vulnerable population.


Gestational Age , Infant, Premature , Mental Disorders , Premature Birth , Twins, Dizygotic , Twins, Monozygotic , Adult , Female , Genome-Wide Association Study , Humans , Male , Mental Disorders/epidemiology , Mental Disorders/genetics , Premature Birth/epidemiology , Premature Birth/genetics
4.
Sci Rep ; 9(1): 1976, 2019 02 13.
Article En | MEDLINE | ID: mdl-30760829

Neuropsychiatric disease has polygenic determinants but is often precipitated by environmental pressures, including adverse perinatal events. However, the way in which genetic vulnerability and early-life adversity interact remains obscure. We hypothesised that the extreme environmental stress of prematurity would promote neuroanatomic abnormality in individuals genetically vulnerable to psychiatric disorders. In 194 unrelated infants (104 males, 90 females), born before 33 weeks of gestation (mean gestational age 29.7 weeks), we combined Magnetic Resonance Imaging with a polygenic risk score (PRS) for five psychiatric pathologies to test the prediction that: deep grey matter abnormalities frequently seen in preterm infants are associated with increased polygenic risk for psychiatric illness. The variance explained by the PRS in the relative volumes of four deep grey matter structures (caudate nucleus, thalamus, subthalamic nucleus and lentiform nucleus) was estimated using linear regression both for the full, mixed ancestral, cohort and a subsample of European infants. Psychiatric PRS was negatively associated with lentiform volume in the full cohort (ß = -0.24, p = 8 × 10-4) and a European subsample (ß = -0.24, p = 8 × 10-3). Genetic variants associated with neuropsychiatric disease increase vulnerability to abnormal lentiform development after perinatal stress and are associated with neuroanatomic changes in the perinatal period.


Environmental Exposure/adverse effects , Gray Matter/embryology , Infant, Premature, Diseases/genetics , Infant, Premature, Diseases/psychology , Mental Disorders/genetics , Multifactorial Inheritance/genetics , Brain Mapping , Caudate Nucleus/abnormalities , Caudate Nucleus/embryology , Corpus Striatum/abnormalities , Corpus Striatum/embryology , Europe , Female , Gray Matter/abnormalities , Humans , Infant, Newborn , Infant, Premature/psychology , Magnetic Resonance Imaging , Male , Subthalamic Nucleus/abnormalities , Subthalamic Nucleus/embryology , Thalamus/abnormalities , Thalamus/embryology
5.
Soc Cogn Affect Neurosci ; 9(9): 1276-80, 2014 Sep.
Article En | MEDLINE | ID: mdl-23887807

Anthropomorphism is the attribution of human characteristics or behaviour to animals, non-living things or natural phenomena. It is pervasive among humans, yet nonetheless exhibits a high degree of inter-individual variability. We hypothesized that brain areas associated with anthropomorphic thinking might be similar to those engaged in the attribution of mental states to other humans, the so-called 'theory of mind' or mentalizing network. To test this hypothesis, we related brain structure measured using magnetic resonance imaging in a sample of 83 healthy young adults to a simple, self-report questionnaire that measured the extent to which our participants made anthropomorphic attributions about non-human animals and non-animal stimuli. We found that individual differences in anthropomorphism for non-human animals correlated with the grey matter volume of the left temporoparietal junction, a brain area involved in mentalizing. Our data support previous work indicating a link between areas of the brain involved in attributing mental states to other humans and those involved in anthropomorphism.


Brain Mapping , Brain/anatomy & histology , Individuality , Adult , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Surveys and Questionnaires , Young Adult
6.
PLoS One ; 8(1): e54789, 2013.
Article En | MEDLINE | ID: mdl-23355900

BACKGROUND: The duration of sounds can affect the perceived duration of co-occurring visual stimuli. However, it is unclear whether this is limited to amodal processes of duration perception or affects other non-temporal qualities of visual perception. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the hypothesis that visual sensitivity--rather than only the perceived duration of visual stimuli--can be affected by the duration of co-occurring sounds. We found that visual detection sensitivity (d') for unimodal stimuli was higher for stimuli of longer duration. Crucially, in a cross-modal condition, we replicated previous unimodal findings, observing that visual sensitivity was shaped by the duration of co-occurring sounds. When short visual stimuli (∼24 ms) were accompanied by sounds of matching duration, visual sensitivity was decreased relative to the unimodal visual condition. However, when the same visual stimuli were accompanied by longer auditory stimuli (∼60-96 ms), visual sensitivity was increased relative to the performance for ∼24 ms auditory stimuli. Across participants, this sensitivity enhancement was observed within a critical time window of ∼60-96 ms. Moreover, the amplitude of this effect correlated with visual sensitivity enhancement found for longer lasting visual stimuli across participants. CONCLUSIONS/SIGNIFICANCE: Our findings show that the duration of co-occurring sounds affects visual perception; it changes visual sensitivity in a similar way as altering the (actual) duration of the visual stimuli does.


Acoustic Stimulation , Sound , Visual Perception/physiology , Adult , Female , Humans , Male , Time Factors
...