Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113
1.
Neurobiol Dis ; : 106554, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38844243

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.

3.
Brain ; 2024 May 04.
Article En | MEDLINE | ID: mdl-38703371

Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterised by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus, and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants (resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases), and p.P497L (three cases)). Using multiplexed (5-label) fluorescent immunohistochemistry, we mapped the co-localisation of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates, and p62, in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5), and UBQLN2-linked (n = 8) cases. We differentiate between i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins, and ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis/and frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wildtype ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wildtype to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.

4.
NPJ Parkinsons Dis ; 10(1): 90, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664405

Gingipains are protease virulence factors produced by Porphyromonas gingivalis, a Gram-negative bacterium best known for its role in chronic periodontitis. Gingipains were recently identified in the middle temporal gyrus of postmortem Alzheimer's disease (AD) brains, where gingipain load correlated with AD diagnosis and tau and ubiquitin pathology. Since AD and Parkinson's disease (PD) share some overlapping pathologic features, including nigral pathology and Lewy bodies, the current study explored whether gingipains are present in the substantia nigra pars compacta of PD brains. In immunohistochemical techniques and multi-channel fluorescence studies, gingipain antigens were abundant in dopaminergic neurons in the substantia nigra of both PD and neurologically normal control brains. 3-dimensional reconstructions of Lewy body containing neurons revealed that gingipains associated with the periphery of alpha-synuclein aggregates but were occasionally observed inside aggregates. In vitro proteomic analysis demonstrated that recombinant alpha-synuclein is cleaved by lysine-gingipain, generating multiple alpha-synuclein fragments including the non-amyloid component fragments. Immunogold electron microscopy with co-labeling of gingipains and alpha-synuclein confirmed the occasional colocalization of gingipains with phosphorylated (pSER129) alpha-synuclein. In dopaminergic neurons, gingipains localized to the perinuclear cytoplasm, neuromelanin, mitochondria, and nucleus. These data suggest that gingipains localize in dopaminergic neurons in the substantia nigra and interact with alpha-synuclein.

5.
Br J Pharmacol ; 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38616050

BACKGROUND AND PURPOSE: The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH: Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS: PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS: The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.

6.
Nat Commun ; 15(1): 1508, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374041

Understanding the mechanisms that drive TDP-43 pathology is integral to combating amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases. Here we generated a longitudinal quantitative proteomic map of the cortex from the cytoplasmic TDP-43 rNLS8 mouse model of ALS and FTLD, and developed a complementary open-access webtool, TDP-map ( https://shiny.rcc.uq.edu.au/TDP-map/ ). We identified distinct protein subsets enriched for diverse biological pathways with temporal alterations in protein abundance, including increases in protein folding factors prior to disease onset. This included increased levels of DnaJ homolog subfamily B member 5, DNAJB5, which also co-localized with TDP-43 pathology in diseased human motor cortex. DNAJB5 over-expression decreased TDP-43 aggregation in cell and cortical neuron cultures, and knockout of Dnajb5 exacerbated motor impairments caused by AAV-mediated cytoplasmic TDP-43 expression in mice. Together, these findings reveal molecular mechanisms at distinct stages of ALS and FTLD progression and suggest that protein folding factors could be protective in neurodegenerative diseases.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Protein Aggregates , TDP-43 Proteinopathies , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Neurons/metabolism , Proteomics , TDP-43 Proteinopathies/metabolism
7.
NPJ Parkinsons Dis ; 10(1): 1, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167744

In Parkinson's disease (PD), and other α-synucleinopathies, α-synuclein (α-Syn) aggregates form a myriad of conformational and truncational variants. Most antibodies used to detect and quantify α-Syn in the human brain target epitopes within the C-terminus (residues 96-140) of the 140 amino acid protein and may fail to capture the diversity of α-Syn variants present in PD. We sought to investigate the heterogeneity of α-Syn conformations and aggregation states in the PD human brain by labelling with multiple antibodies that detect epitopes along the entire length of α-Syn. We used multiplex immunohistochemistry to simultaneously immunolabel tissue sections with antibodies mapping the three structural domains of α-Syn. Discrete epitope-specific immunoreactivities were visualised and quantified in the olfactory bulb, medulla, substantia nigra, hippocampus, entorhinal cortex, middle temporal gyrus, and middle frontal gyrus of ten PD cases, and the middle temporal gyrus of 23 PD, and 24 neurologically normal cases. Distinct Lewy neurite and Lewy body aggregate morphologies were detected across all interrogated regions/cases. Lewy neurites were the most prominent in the olfactory bulb and hippocampus, while the substantia nigra, medulla and cortical regions showed a mixture of Lewy neurites and Lewy bodies. Importantly, unique N-terminus immunoreactivity revealed previously uncharacterised populations of (1) perinuclear, (2) glial (microglial and astrocytic), and (3) neuronal lysosomal α-Syn aggregates. These epitope-specific N-terminus immunoreactive aggregate populations were susceptible to proteolysis via time-dependent proteinase K digestion, suggesting a less stable oligomeric aggregation state. Our identification of unique N-terminus immunoreactive α-Syn aggregates adds to the emerging paradigm that α-Syn pathology is more abundant and complex in human brains with PD than previously realised. Our findings highlight that labelling multiple regions of the α-Syn protein is necessary to investigate the full spectrum of α-Syn pathology and prompt further investigation into the functional role of these N-terminus polymorphs.

8.
Brain Pathol ; 34(3): e13230, 2024 May.
Article En | MEDLINE | ID: mdl-38115557

Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Adaptor Proteins, Signal Transducing/metabolism , Amyotrophic Lateral Sclerosis/pathology , Autophagy-Related Proteins/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mutation , Transcription Factors/metabolism
9.
Acta Neuropathol Commun ; 11(1): 197, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38093390

In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.


Alzheimer Disease , Receptors, LDL , Humans , Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism
10.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Article En | MEDLINE | ID: mdl-37827155

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Replication Protein A , Trinucleotide Repeat Expansion , Animals , Humans , Mice , DNA/genetics , DNA Mismatch Repair , Huntington Disease/genetics , Proteins/genetics , Spinocerebellar Ataxias/genetics , Replication Protein A/metabolism
11.
Neurobiol Dis ; 185: 106245, 2023 09.
Article En | MEDLINE | ID: mdl-37527763

TDP-43 dysfunction is a molecular hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A major hypothesis of TDP-43 dysfunction in disease is the loss of normal nuclear function, resulting in impaired RNA regulation and the emergence of cryptic exons. Cryptic exons and differential exon usage are emerging as promising markers of lost TDP-43 function in addition to revealing biological pathways involved in neurodegeneration in ALS/FTD. In this brief report, we identified markers of TDP-43 loss of function by depleting TARDBP from post-mortem human brain pericytes, a manipulable in vitro primary human brain cell model, and identifying differential exon usage events with bulk RNA-sequencing analysis. We present these data in an interactive database (https://www.scotterlab.auckland.ac.nz/research-themes/tdp43-lof-db-v2/) together with seven other TDP-43-depletion datasets we meta-analysed previously, for user analysis of differential expression and splicing signatures. Differential exon usage events that were validated by qPCR were then compiled into a 'differential exon usage panel' with other well-established TDP-43 loss-of-function exon markers. This differential exon usage panel was investigated in ALS and control motor cortex tissue to verify whether, and to what extent, TDP-43 loss of function occurs in ALS. We find that profiles of TDP-43-regulated cryptic exons, changed exon usage and changed 3' UTR usage discriminate ALS brain tissue from controls, verifying that TDP-43 loss of function occurs in ALS. We propose that TDP-43-regulated splicing events that occur in brain tissue will have promise as predictors of disease.


Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , RNA , RNA Splicing
12.
Res Sq ; 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37461602

BACKGROUND: Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS: We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS: We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION: Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.

13.
medRxiv ; 2023 May 21.
Article En | MEDLINE | ID: mdl-37333406

BACKGROUND: Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS: We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS: We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION: Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.

14.
J Comp Neurol ; 531(8): 888-920, 2023 06.
Article En | MEDLINE | ID: mdl-37002560

The dorsal striatum forms a central node of the basal ganglia interconnecting the neocortex and thalamus with circuits modulating mood and movement. Striatal projection neurons (SPNs) include relatively intermixed populations expressing D1-type or D2-type dopamine receptors (dSPNs and iSPNs) that give rise to the direct (D1) and indirect (D2) output systems of the basal ganglia. Overlaid on this organization is a compartmental organization, in which a labyrinthine system of striosomes made up of sequestered SPNs is embedded within the larger striatal matrix. Striosomal SPNs also include D1-SPNs and D2-SPNs, but they can be distinguished from matrix SPNs by many neurochemical markers. In the rodent striatum the key signaling molecule, DARPP-32, is a exception to these compartmental expression patterns, thought to befit its functions through opposite actions in both D1- and D2-expressing SPNs. We demonstrate here, however, that in the dorsal human striatum, DARPP-32 is concentrated in the neuropil and SPNs of striosomes, especially in the caudate nucleus and dorsomedial putamen, relative to the matrix neuropil in these regions. The generally DARPP-32-poor matrix contains scattered DARPP-32-positive cells. DARPP-32 cell bodies in both compartments proved negative for conventional intraneuronal markers. These findings raise the potential for specialized DARPP-32 expression in the human striosomal system and in a set of DARPP-32-positive neurons in the matrix. If DARPP-32 immunohistochemical positivity predicts differential functional DARPP-32 activity, then the distributions demonstrated here could render striosomes and dispersed matrix cells susceptible to differential signaling through cAMP and other signaling systems in health and disease. DARPP-32 is highly concentrated in cells and neuropil of striosomes in post-mortem human brain tissue, particularly in the dorsal caudate nucleus. Scattered DARPP-32-positive cells are found in the human striatal matrix. Calbindin and DARPP-32 do not colocalize within every spiny projection neuron in the dorsal human caudate nucleus.


Caudate Nucleus , Corpus Striatum , Humans , Corpus Striatum/metabolism , Caudate Nucleus/metabolism , Basal Ganglia , Neurons/metabolism , Receptors, Dopamine D2/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Neuropil/metabolism
15.
Acta Neuropathol Commun ; 11(1): 69, 2023 04 28.
Article En | MEDLINE | ID: mdl-37118836

Microglia, the innate immune cells of the brain, are activated by damage or disease. In mouse models of amyotrophic lateral sclerosis (ALS), microglia shift from neurotrophic to neurotoxic states with disease progression. It remains unclear how human microglia change relative to the TAR DNA-binding protein 43 (TDP-43) aggregation that occurs in 97% of ALS cases. Here we examine spatial relationships between microglial activation and TDP-43 pathology in brain tissue from people with ALS and from a TDP-43-driven ALS mouse model. Post-mortem human brain tissue from the Neurological Foundation Human Brain Bank was obtained from 10 control and 10 ALS cases in parallel with brain tissue from a bigenic NEFH-tTA/tetO-hTDP-43∆NLS (rNLS) mouse model of ALS at disease onset, early disease, and late disease stages. The spatiotemporal relationship between microglial activation and ALS pathology was determined by investigating microglial functional marker expression in brain regions with low and high TDP-43 burden at end-stage human disease: hippocampus and motor cortex, respectively. Sections were immunohistochemically labelled with a two-round multiplexed antibody panel against; microglial functional markers (L-ferritin, HLA-DR, CD74, CD68, and Iba1), a neuronal marker, an astrocyte marker, and pathological phosphorylated TDP-43 (pTDP-43). Single-cell levels of microglial functional markers were quantified using custom analysis pipelines and mapped to anatomical regions and ALS pathology. We identified a significant increase in microglial Iba1 and CD68 expression in the human ALS motor cortex, with microglial CD68 being significantly correlated with pTDP-43 pathology load. We also identified two subpopulations of microglia enriched in the ALS motor cortex that were defined by high L-ferritin expression. A similar pattern of microglial changes was observed in the rNLS mouse, with an increase first in CD68 and then in L-ferritin expression, with both occurring only after pTDP-43 inclusions were detectable. Our data strongly suggest that microglia are phagocytic at early-stage ALS but transition to a dysfunctional state at end-stage disease, and that these functional states are driven by pTDP-43 aggregation. Overall, these findings enhance our understanding of microglial phenotypes and function in ALS.


Amyotrophic Lateral Sclerosis , Humans , Mice , Animals , Amyotrophic Lateral Sclerosis/pathology , Microglia/metabolism , Apoferritins/metabolism , Up-Regulation , Brain/pathology , DNA-Binding Proteins/metabolism
16.
J Alzheimers Dis ; 92(1): 371-390, 2023.
Article En | MEDLINE | ID: mdl-36744342

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia and is characterized by a substantial reduction of neuroplasticity. Our previous work demonstrated that neurons involved in memory function may lose plasticity because of decreased protein levels of polysialylated neural cell adhesion molecule (PSA-NCAM) in the entorhinal cortex (EC) of the human AD brain, but the cause of this decrease is unclear. OBJECTIVE: To investigate genes involved in PSA-NCAM regulation which may underlie its decrease in the AD EC. METHODS: We subjected neurologically normal and AD human EC sections to multiplexed fluorescent in situ hybridization and immunohistochemistry to investigate genes involved in PSA-NCAM regulation. Gene expression changes were sought to be validated in both human tissue and a mouse model of AD. RESULTS: In the AD EC, a cell population expressing a high level of CALB2 mRNA and a cell population expressing a high level of PST mRNA were both decreased. CALB2 mRNA and protein were not decreased globally, indicating that the decrease in CALB2 was specific to a sub-population of cells. A significant decrease in PST mRNA expression was observed with single-plex in situ hybridization in middle temporal gyrus tissue microarray cores from AD patients, which negatively correlated with tau pathology, hinting at global loss in PST expression across the AD brain. No significant differences in PSA-NCAM or PST protein expression were observed in the MAPT P301S mouse brain at 9 months of age. CONCLUSION: We conclude that PSA-NCAM dysregulation may cause subsequent loss of structural plasticity in AD, and this may result from a loss of PST mRNA expression. Due PSTs involvement in structural plasticity, intervention for AD may be possible by targeting this disrupted plasticity pathway.


Alzheimer Disease , Entorhinal Cortex , Mice , Animals , Humans , Entorhinal Cortex/pathology , Alzheimer Disease/pathology , In Situ Hybridization, Fluorescence , Neural Cell Adhesion Molecules/metabolism , In Situ Hybridization , Neuronal Plasticity/physiology , Gene Expression , RNA, Messenger/metabolism
17.
Neuroscience ; 516: 113-124, 2023 04 15.
Article En | MEDLINE | ID: mdl-36716914

Years before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and ß-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause ß-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of ß-amyloid that occurs in human AD, we investigated the progressive accumulation of ß-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons. Using design-based stereology, we show the progressive accumulation of ß-amyloid plaques within the OB and cortical olfactory regions with age. We also observe reduced OB volumes in these mice when hAPP expression begins prior-to but not post-weaning which we tracked using manganese-enhanced MRI. We therefore conclude that the reduced OB volume does not represent progressive degeneration but rather disrupted OB development. Overall, our data demonstrate that hAPP expression in the olfactory epithelium can lead to the accumulation and spread of ß-amyloid through the olfactory system into the hippocampus, consistent with an olfactory system role in the early stages of ß-amyloid-related AD progression.


Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Smell/physiology , Plaque, Amyloid/pathology , Mice, Transgenic , Alzheimer Disease/metabolism , Olfactory Bulb/metabolism , Disease Models, Animal
18.
Anat Rec (Hoboken) ; 306(4): 777-819, 2023 04.
Article En | MEDLINE | ID: mdl-36099279

The human spinal cord can be described using a range of nomenclatures with each providing insight into its structure and function. Here we have comprehensively reviewed the key literature detailing the general structure, configuration of tracts, the cytoarchitecture of Rexed's laminae, and the neurochemistry at the spinal segmental level. The purpose of this review is to detail current anatomical understanding of how the spinal cord is structured and to aid researchers in identifying gaps in the literature that need to be studied to improve our knowledge of the spinal cord which in turn will improve the potential of therapeutic intervention for disorders of the spinal cord.


Neurochemistry , Humans , Spinal Cord , Spine , Neural Pathways
19.
PLoS One ; 17(11): e0277658, 2022.
Article En | MEDLINE | ID: mdl-36399706

Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterised by the abnormal accumulation of α-synuclein (α-syn) aggregates. Central to disease progression is the gradual spread of pathological α-syn. α-syn aggregation is closely linked to progressive neuron loss. As such, clearance of α-syn aggregates may slow the progression of PD and lead to less severe symptoms. Evidence is increasing that non-neuronal cells play a role in PD and other synucleinopathies such as Lewy body dementia and multiple system atrophy. Our previous work has shown that pericytes-vascular mural cells that regulate the blood-brain barrier-contain α-syn aggregates in human PD brains. Here, we demonstrate that pericytes efficiently internalise fibrillar α-syn irrespective of being in a monoculture or mixed neuronal cell culture. Pericytes cleave fibrillar α-syn aggregates (Fibrils, Ribbons, fibrils65, fibrils91 and fibrils110), with cleaved α-syn remaining present for up to 21 days. The number of α-syn aggregates/cell and average aggregate size depends on the type of strain, but differences disappear within 5 five hours of treatment. Our results highlight the role brain vasculature may play in reducing α-syn aggregate burden in PD.


Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Pericytes/metabolism , Lewy Body Disease/metabolism , Parkinson Disease/pathology , Neurons/metabolism
20.
Microorganisms ; 10(11)2022 Nov 03.
Article En | MEDLINE | ID: mdl-36363772

Individuals naturally carry bacteria and other microbes as part of their natural flora, with some being opportunistic pathogens. Approximately 30% of the population is known to carry Staphylococcus aureus in their nasal cavity, an organism that causes infections ranging from soft tissue abscesses to toxic shock syndrome. This problem is compounded by the presence of antibiotic-resistant strains such as Methicillin-Resistant Staphylococcus aureus (MRSA). Commensal bacteria present on cadavers pose a risk to those who handle the body. As a Medical School Anatomy laboratory that performs hands-on cadaveric dissection, we wanted to know whether the embalming process is sufficient to kill all commensal bacteria that pose a risk to staff and students. Even if these strains do not cause disease in these individuals, secondary transmission could occur to friends and family, who may be at higher risk of acquiring an infection. Embalming is assumed to eliminate all microbial contamination on the body. However, there are limited studies to confirm this. This study characterises the incidence of antibiotic sensitive and resistant bacteria in cadavers donated for medical teaching and research. We have screened for Methicillin-Resistant Organisms (MRO) and Extended-Spectrum Beta-Lactamase (ESBL) producing bacteria. In this study group of cadavers, approximately 46% (16/35) carry an MRO, while 51% (18/35) carry an ESBL positive organism prior to embalming. By determining the organisms' presence pre- and post-embalming, we can evaluate the embalming procedure's effectiveness. Our results show embalming eliminates detectable microbes in about 51% (18/35) of the cadavers. MRO dropped by 75% (16 to 4 positive cadavers), while ESBL organisms went down by almost 95% (from 18 to 1 positive cadaver). There was a further decrease in the number of positive cadavers after storage at 4 °C to 6% (2/32). Thus, although the embalming process does not immediately sterilise all the cadavers, prolonged storage at 4 °C can further reduce the number of viable bacteria.

...