Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Proc Natl Acad Sci U S A ; 121(37): e2403421121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226350

ABSTRACT

Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.


Subject(s)
ATP-Binding Cassette Transporters , Bacterial Proteins , Cryoelectron Microscopy , Drug Resistance, Bacterial , Mycobacterium tuberculosis , Rifampin , Rifampin/pharmacology , Rifampin/metabolism , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/ultrastructure , ATP-Binding Cassette Transporters/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Bacterial Proteins/genetics , Models, Molecular , Adenylyl Imidodiphosphate/metabolism
2.
Nat Commun ; 15(1): 6729, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112493

ABSTRACT

Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment.


Subject(s)
Molecular Dynamics Simulation , Polymerization , Polymers , Animals , Mice , Polymers/chemistry , Tissue Distribution , Proteins/chemistry , Humans
3.
Nature ; 632(8024): 383-389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048823

ABSTRACT

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.


Subject(s)
Antiviral Restriction Factors , Brain , Herpes Simplex , Herpesvirus 1, Human , Membrane Proteins , Neurons , Virus Internalization , Virus Replication , Animals , Female , Humans , Male , Mice , Antiviral Restriction Factors/metabolism , Brain/cytology , Brain/metabolism , Brain/pathology , Brain/virology , Cell Death , CRISPR-Cas Systems/genetics , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/growth & development , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Membrane Proteins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Neurons/virology , Neurons/metabolism , Viral Load , Nectins/metabolism , Nonmuscle Myosin Type IIA/metabolism , Nonmuscle Myosin Type IIB/metabolism , Interferon Type I , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/virology
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1118-1129, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39066577

ABSTRACT

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Glycosylation , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , HEK293 Cells , SARS-CoV-2/metabolism , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , Polysaccharides/metabolism , Polysaccharides/chemistry , Polypeptide N-acetylgalactosaminyltransferase , Molecular Dynamics Simulation , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Protein Multimerization , COVID-19/virology , COVID-19/metabolism
5.
Angew Chem Int Ed Engl ; 63(36): e202408345, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38888253

ABSTRACT

Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.

6.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38752340

ABSTRACT

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Subject(s)
CRISPR-Cas Systems , Cardiac Myosins , Cardiomyopathy, Hypertrophic , Myosin Heavy Chains , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/therapy , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Mice , Humans , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Alleles , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Genetic Therapy/methods
7.
Nat Biomed Eng ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714892

ABSTRACT

Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.

8.
Int J Biol Macromol ; 268(Pt 1): 131696, 2024 May.
Article in English | MEDLINE | ID: mdl-38642679

ABSTRACT

Carbon­carbon (C-C) bonds serve as the fundamental structural backbone of organic molecules. As a critical CC bond forming enzyme, α-oxoamine synthase is responsible for the synthesis of α-amino ketones by performing the condensation reaction between amino acids and acyl-CoAs. We previously identified an α-oxoamine synthase (AOS), named as Alb29, involved in albogrisin biosynthesis in Streptomyces albogriseolus MGR072. This enzyme belongs to the α-oxoamine synthase family, a subfamily under the pyridoxal 5'-phosphate (PLP) dependent enzyme superfamily. In this study, we report the crystal structures of Alb29 bound to PLP and L-Glu, which provide the atomic-level structural insights into the substrate recognition by Alb29. We discover that Alb29 can catalyze the amino transformation from L-Gln to L-Glu, besides the condensation of L-Glu with ß-methylcrotonyl coenzyme A. Subsequent structural analysis has revealed that one flexible loop in Alb29 plays an important role in both amino transformation and condensation. Based on the crystal structure of the S87G mutant in the loop region, we capture two distinct conformations of the flexible loop in the active site, compared with the wild-type Alb29. Our study offers valuable insights into the catalytic mechanism underlying substrate recognition of Alb29.


Subject(s)
Glutamic Acid , Substrate Specificity , Glutamic Acid/chemistry , Models, Molecular , Streptomyces/enzymology , Crystallography, X-Ray , Catalytic Domain , Protein Conformation , Pyridoxal Phosphate/metabolism , Pyridoxal Phosphate/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Structure-Activity Relationship
9.
Phys Chem Chem Phys ; 26(17): 13441-13451, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647259

ABSTRACT

Soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) catalyzes the glycosylation of asparagine residues, and represents one of the most encouraging biocatalysts for N-glycoprotein production. Since the sugar tolerance of ApNGT is restricted to limited monosaccharides (e.g., Glc, GlcN, Gal, Xyl, and Man), tremendous efforts are devoted to expanding the substrate scope of ApNGT via enzyme engineering. However, rational design of novel NGT variants suffers from an elusive understanding of the substrate-binding process from a dynamic point of view. Here, by employing extensive all-atom molecular dynamics (MD) simulations integrated with a kinetic model, we reveal, at the atomic level, the complete donor-substrate binding process from the bulk solvent to the ApNGT active-site, and the key intermediate states of UDP-Glc during its loading dynamics. We are able to determine the critical transition event that limits the overall binding rate, which guides us to pinpoint the key ApNGT residues dictating the donor-substrate entry. The functional roles of several identified gating residues were evaluated through site-directed mutagenesis and enzymatic assays. Two single-point mutations, N471A and S496A, could profoundly enhance the catalytic activity of ApNGT. Our work provides deep mechanistic insights into the structural dynamics of the donor-substrate loading process for ApNGT, which sets a rational basis for design of novel NGT variants with desired substrate specificity.


Subject(s)
Actinobacillus pleuropneumoniae , Glycosyltransferases , Molecular Dynamics Simulation , Actinobacillus pleuropneumoniae/enzymology , Actinobacillus pleuropneumoniae/metabolism , Actinobacillus pleuropneumoniae/genetics , Kinetics , Substrate Specificity , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Mutagenesis, Site-Directed , Catalytic Domain
10.
Adv Sci (Weinh) ; 10(30): e2303224, 2023 10.
Article in English | MEDLINE | ID: mdl-37661576

ABSTRACT

Phosphorylation of Ser10 of histone H3 (H3S10p), together with the adjacent methylation of Lys9 (H3K9me), has been proposed to function as a 'phospho-methyl switch' to regulate mitotic chromatin architecture. Despite of immense understanding of the roles of H3S10 phosphorylation, how H3K9me2 are dynamically regulated during mitosis is poorly understood. Here, it is identified that Plk1 kinase phosphorylates the H3K9me1/2 methyltransferase G9a/EHMT2 at Thr1045 (pT1045) during early mitosis, which attenuates its catalytic activity toward H3K9me2. Cells bearing Thr1045 phosphomimic mutant of G9a (T1045E) show decreased H3K9me2 levels, increased chromatin accessibility, and delayed mitotic progression. By contrast, dephosphorylation of pT1045 during late mitosis by the protein phosphatase PPP2CB reactivates G9a activity and upregulates H3K9me2 levels, correlated with decreased levels of H3S10p. Therefore, the results provide a mechanistic explanation of the essential of a 'phospho-methyl switch' and highlight the importance of Plk1 and PPP2CB-mediated dynamic regulation of G9a activity in chromatin organization and mitotic progression.


Subject(s)
Chromatin , Histone-Lysine N-Methyltransferase , Phosphorylation , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Methylation
11.
JACS Au ; 3(8): 2144-2155, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654596

ABSTRACT

The soluble N-glycosyltransferase from Actinobacillus pleuropneumoniae (ApNGT) can establish an N-glycosidic bond at the asparagine residue in the Asn-Xaa-Ser/Thr consensus sequon and is one of the most promising tools for N-glycoprotein production. Here, by integrating computational and experimental strategies, we revealed the molecular mechanism of the substrate recognition and following catalysis of ApNGT. These findings allowed us to pinpoint a key structural motif (215DVYM218) in ApNGT responsible for the peptide substrate recognition. Moreover, Y222 and H371 of ApNGT were found to participate in activating the acceptor Asn. The constructed models were supported by further crystallographic studies and the functional roles of the identified residues were validated by measuring the glycosylation activity of various mutants against a library of synthetic peptides. Intriguingly, with particular mutants, site-selective N-glycosylation of canonical or noncanonical sequons within natural polypeptides from the SARS-CoV-2 spike protein could be achieved, which were used to investigate the biological roles of the N-glycosylation in membrane fusion during virus entry. Our study thus provides in-depth molecular mechanisms underlying the substrate recognition and catalysis for ApNGT, leading to the synthesis of previously unknown chemically defined N-glycoproteins for exploring the biological importance of the N-glycosylation at a specific site.

12.
Proc Natl Acad Sci U S A ; 120(23): e2302858120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252995

ABSTRACT

Arabinogalactan (AG) is an essential cell wall component in mycobacterial species, including the deadly human pathogen Mycobacterium tuberculosis. It plays a pivotal role in forming the rigid mycolyl-AG-peptidoglycan core for in vitro growth. AftA is a membrane-bound arabinosyltransferase and a key enzyme involved in AG biosynthesis which bridges the assembly of the arabinan chain to the galactan chain. It is known that AftA catalyzes the transfer of the first arabinofuranosyl residue from the donor decaprenyl-monophosphoryl-arabinose to the mature galactan chain (i.e., priming); however, the priming mechanism remains elusive. Herein, we report the cryo-EM structure of Mtb AftA. The detergent-embedded AftA assembles as a dimer with an interface maintained by both the transmembrane domain (TMD) and the soluble C-terminal domain (CTD) in the periplasm. The structure shows a conserved glycosyltransferase-C fold and two cavities converging at the active site. A metal ion participates in the interaction of TMD and CTD of each AftA molecule. Structural analyses combined with functional mutagenesis suggests a priming mechanism catalyzed by AftA in Mtb AG biosynthesis. Our data further provide a unique perspective into anti-TB drug discovery.


Subject(s)
Mycobacterium tuberculosis , Humans , Galactans , Pentosyltransferases/genetics
13.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37098343

ABSTRACT

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Subject(s)
Cytidine Deaminase , Somatic Hypermutation, Immunoglobulin , Animals , Mice , Antibodies/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/genetics , DNA, Single-Stranded , Mutation , Evolution, Molecular , Complementarity Determining Regions/genetics , Nucleotide Motifs
14.
Biophys J ; 122(9): 1665-1677, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36964657

ABSTRACT

Major histocompatibility complex class II (MHC-II) plays an indispensable role in activating CD4+ T cell immune responses by presenting antigenic peptides on the cell surface for recognition by T cell receptors. The assembly of MHC-II and antigenic peptide is therefore a prerequisite for the antigen presentation. To date, however, the atomic-level mechanism underlying the peptide-loading dynamics for MHC-II is still elusive. Here, by constructing Markov state models based on extensive all-atom molecular dynamics simulations, we reveal the complete peptide-loading dynamics into MHC-II for one SARS-CoV-2 S-protein-derived antigenic peptide (235ITRFQTLLALHRSYL249). Our Markov state model identifies six metastable states (S1-S6) during the peptide-loading process and determines two dominant loading pathways. The peptide could potentially approach the antigen-binding groove via either its N- or C-terminus. Then, the consecutive insertion of several anchor residues into the binding pockets profoundly dictates the peptide-loading dynamics. Notably, the MHC-II αA52-E55 motif could guide the peptide loading into the antigen-binding groove via forming ß-sheets conformation with the incoming peptide. The rate-limiting step, namely S5→S6, is mainly attributed to a considerable desolvation penalty triggered by the binding of the peptide C-terminus. Moreover, we further examined the conformational changes associated with the peptide exchange process catalyzed by the chaperon protein HLA-DM. A flipped-out conformation of MHC-II αW43 captured in S1-S3 is considered a critical anchor point for HLA-DM to modulate the structural dynamics. Our work provides deep structural insights into the key regulatory factors in MHC-II responsible for peptide recognition and guides future design for peptide vaccines against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/metabolism , Peptides/chemistry , Protein Binding
15.
J Chem Inf Model ; 63(2): 605-618, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36607244

ABSTRACT

Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of ß2 integrin. The phosphorylation on threonine 758 of ß2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.


Subject(s)
CD18 Antigens , Molecular Dynamics Simulation , CD18 Antigens/chemistry , CD18 Antigens/genetics , CD18 Antigens/metabolism , Filamins/chemistry , Filamins/metabolism , Phosphorylation
16.
Bone ; 169: 116680, 2023 04.
Article in English | MEDLINE | ID: mdl-36702335

ABSTRACT

Breast cancer is the main lethal disease among females, and metastasis to lung and bone poses a serious threat to patients' life. Therefore, identification of novel molecular mediators that can potentially be exploited as therapeutic targets for treating osteolytic bone metastases is needed. A murine model of breast cancer bone metastasis was developed by injection of 4 T1.2 cells into the left ventricle and hence directly into the arterial system leading to bone. AEP (Asparagine endopeptidase) inhibitor combined with epirubicin or epirubicin alone was administered by intraperitoneal injection into animal model. The presence of bone metastatic and osteolytic lesions in bone were assessed by bioluminescent imaging and X-rays analysis. The expression of EMT (Epithelial-Mesenchymal Transition) relevant genes were examined by Western blotting. Cell migration and invasion were investigated with a transwell assay. Compound BIC-113, small molecule inhibitors of AEP, inhibited AEP enzymatic activity in breast cancer cell lines, and affected invasion and migration of cancer cells, but had no effect on cell growth. In animal model of breast cancer bone metastasis, compound BIC-113 combined with epirubicin inhibited breast cancer bone metastasis and attenuated breast cancer osteolytic lesions in bone by inhibiting osteoclast differentiation and EMT. These results indicate that compound BIC-113 combined with epirubicin has the potential to be used in breast cancer therapy by preventing bone metastasis via improving E-cadherin expression and inhibition of osteoclast formation.


Subject(s)
Bone Neoplasms , Osteoclasts , Female , Mice , Animals , Epirubicin , Osteoclasts/pathology , Cell Line, Tumor , Bone Neoplasms/secondary , Cell Differentiation , Neoplasm Metastasis/pathology
17.
J Chem Inf Model ; 62(13): 3213-3226, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35708296

ABSTRACT

Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.


Subject(s)
DNA Glycosylases , Catalytic Domain , DNA/chemistry , DNA Glycosylases/chemistry , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , Humans
18.
Phys Chem Chem Phys ; 24(20): 12397-12409, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35575131

ABSTRACT

Major histocompatibility complex class I (MHC-I) molecules display antigenic peptides on the cell surface for T cell receptor scanning, thereby activating the immune response. Peptide loading into MHC-I molecules is thus a critical step during the antigen presentation process. Chaperone TAP-binding protein related (TAPBPR) plays a critical role in promoting high-affinity peptide loading into MHC-I, by discriminating against the low-affinity ones. However, the complete peptide loading dynamics into TAPBPR-bound MHC-I is still elusive. Here, we constructed kinetic network models based on hundreds of short-time MD simulations with an aggregated simulation time of ∼21.7 µs, and revealed, at atomic level, four key intermediate states of one antigenic peptide derived from melanoma-associated MART-1/Melan-A protein during its loading process into TAPBPR-bound MHC-I. We find that the TAPBPR binding at the MHC-I pocket-F can substantially reshape the distant pocket-B via allosteric regulations, which in turn promotes the following peptide N-terminal loading. Intriguingly, the partially loaded peptide could profoundly weaken the TAPBPR-MHC stability, promoting the dissociation of the TAPBPR scoop-loop (SL) region from the pocket-F to a more solvent-exposed conformation. Structural inspections further indicate that the peptide loading could remotely affect the SL binding site through both allosteric perturbations and direct contacts. In addition, another structural motif of TAPBPR, the jack hairpin region, was also found to participate in mediating the peptide editing. Our study sheds light on the detailed molecular mechanisms underlying the peptide loading process into TAPBPR-bound MHC-I and pinpoints the key structural factors responsible for dictating the peptide-loading dynamics.


Subject(s)
Carrier Proteins , Immunoglobulins , Carrier Proteins/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Major Histocompatibility Complex , Membrane Proteins/chemistry , Molecular Chaperones , Peptides/chemistry , Protein Binding
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(6): 796-806, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35593467

ABSTRACT

DNA glycosylase, as one member of DNA repair machineries, plays an essential role in correcting mismatched/damaged DNA nucleotides by cleaving the N-glycosidic bond between the sugar and target nucleobase through the base excision repair (BER) pathways. Efficient corrections of these DNA lesions are critical for maintaining genome integrity and preventing premature aging and cancers. The target-site searching/recognition mechanisms and the subsequent conformational dynamics of DNA glycosylase, however, remain challenging to be characterized using experimental techniques. In this review, we summarize our recent studies of sequential structural changes of thymine DNA glycosylase (TDG) during the DNA repair process, achieved mostly by molecular dynamics (MD) simulations. Computational simulations allow us to reveal atomic-level structural dynamics of TDG as it approaches the target-site, and pinpoint the key structural elements responsible for regulating the translocation of TDG along DNA. Subsequently, upon locating the lesions, TDG adopts a base-flipping mechanism to extrude the mispaired nucleobase into the enzyme active-site. The constructed kinetic network model elucidates six metastable states during the base-extrusion process and suggests an active role of TDG in flipping the intrahelical nucleobase. Finally, the molecular mechanism of product release dynamics after catalysis is also summarized. Taken together, we highlight to what extent the computational simulations advance our knowledge and understanding of the molecular mechanism underlying the conformational dynamics of TDG, as well as the limitations of current theoretical work.


Subject(s)
Thymine DNA Glycosylase , DNA/genetics , DNA Repair , Nucleotides , Sugars , Thymine DNA Glycosylase/metabolism
20.
J Vis Exp ; (181)2022 03 01.
Article in English | MEDLINE | ID: mdl-35311814

ABSTRACT

One-dimensional (1-D) sliding of transcription factor (TF) protein along DNA is essential for facilitated diffusion of the TF to locate target DNA site for genetic regulation. Detecting base-pair (bp) resolution of the TF sliding or stepping on the DNA is still experimentally challenging. We have recently performed all-atom molecular dynamics (MD) simulations capturing spontaneous 1-bp stepping of a small WRKY domain TF protein along DNA. Based on the 10 µs WRKY stepping path obtained from such simulations, the protocol here shows how to conduct more extensive conformational samplings of the TF-DNA systems, by constructing the Markov state model (MSM) for the 1-bp protein stepping, with various numbers of micro- and macro-states tested for the MSM construction. In order to examine processive 1-D diffusional search of the TF protein along DNA with structural basis, the protocol further shows how to conduct coarse-grained (CG) MD simulations to sample long-time scale dynamics of the system. Such CG modeling and simulations are particularly useful to reveal the protein-DNA electrostatic impacts on the processive diffusional motions of the TF protein above tens of microseconds, in comparison with sub-microseconds to microseconds protein stepping motions revealed from the all-atom simulations.


Subject(s)
Molecular Dynamics Simulation , Transcription Factors , DNA/chemistry , Diffusion , Transcription Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL