Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genes (Basel) ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927675

ABSTRACT

Lhx3 is a LIM-homeodomain transcription factor that affects body size in mammals by regulating the secretion of pituitary hormones. Akita, Shiba Inu, and Mame Shiba Inu dogs are Japanese native dog breeds that have different body sizes. To determine whether Lhx3 plays a role in the differing body sizes of these three dog breeds, we sequenced the Lhx3 gene in the three breeds, which led to the identification of an SNP in codon 280 (S280N) associated with body size. The allele frequency at this SNP differed significantly between the large Akita and the two kinds of smaller Shiba dogs. To validate the function of this SNP on body size, we introduced this change into the Lhx3 gene of mice. Homozygous mutant mice (S279N+/+) were found to have significantly increased body lengths and weights compared to heterozygous mutant (S279N+/-) and wild-type (S279N-/-) mice several weeks after weaning. These results demonstrate that a nonsynonymous substitution in Lhx3 plays an important role in regulating body size in mammals.


Subject(s)
Body Size , LIM-Homeodomain Proteins , Polymorphism, Single Nucleotide , Transcription Factors , Animals , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Transcription Factors/genetics , Mice , Body Size/genetics , Dogs/genetics , Gene Frequency , Male , Female
2.
Front Genet ; 12: 671686, 2021.
Article in English | MEDLINE | ID: mdl-34335687

ABSTRACT

Body size is an important trait in companion animals. Recently, a primitive Japanese dog breed, the Shiba Inu, has experienced artificial selection for smaller body size, resulting in the "Mame Shiba Inu" breed. To identify loci and genes that might explain the difference in the body size of these Shiba Inu dogs, we applied whole genome sequencing of pooled samples (pool-seq) on both Shiba Inu and Mame Shiba Inu. We identified a total of 13,618,261 unique SNPs in the genomes of these two breeds of dog. Using selective sweep approaches, including F ST, H p and XP-CLR with sliding windows, we identified a total of 12 genomic windows that show signatures of selection that overlap with nine genes (PRDM16, ZNF382, ZNF461, ERGIC2, ENSCAFG00000033351, CCDC61, ALDH3A2, ENSCAFG00000011141, and ENSCAFG00000018533). These results provide candidate genes and specific sites that might be associated with body size in dogs. Some of these genes are associated with body size in other mammals, but 8 of the 9 genes are novel candidate genes that need further study.

4.
Front Microbiol ; 11: 596882, 2020.
Article in English | MEDLINE | ID: mdl-33424800

ABSTRACT

The intestinal microbial composition and metabolic functions under normal physiological conditions in the donkey are crucial for health and production performance. However, compared with other animal species, limited information is currently available regarding the intestinal microbiota of donkeys. In the present study, we characterized the biogeography and potential functions of the intestinal digesta- and mucosa-associated microbiota of different segments of the intestine (jejunum, ileum, cecum, and colon) in the donkey, focusing on the differences in the microbial communities between the small and large intestine. Our results show that, Firmicutes and Bacteroidetes dominate in both the digesta- and mucosa-associated microbiota in different intestinal locations of the donkey. Starch-degrading and acid-producing (butyrate and lactate) microbiota, such as Lactobacillus and Sarcina, were more enriched in the small intestine, while the fiber- and mucin-degrading bacteria, such as Akkermansia, were more enriched in the large intestine. Furthermore, metabolic functions in membrane transport and lipid metabolism were more enriched in the small intestine, while functions for energy metabolism, metabolism of cofactors and vitamins, amino acid metabolism were more enriched in the large intestine. In addition, the microbial composition and functions in the digesta-associated microbiota among intestinal locations differed greatly, while the mucosal differences were smaller, suggesting a more stable and consistent role in the different intestinal locations. This study provides us with new information on the microbial differences between the small and large intestines of the donkey and the synergistic effects of the intestinal microbiota with host functions, which may improve our understanding the evolution of the equine digestive system and contribute to the healthy and efficient breeding of donkeys.

5.
J Anim Sci ; 97(4): 1578-1585, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30785190

ABSTRACT

Through domestication and human selection, horses have acquired various coat colors, including seven phenotypes: black, brown, dark bay, bay, chestnut, white, and gray. Here we determined the genotypes for melanocortin-1 receptor (MC1R) and agouti signaling protein (ASIP) in 709 horses from 15 breeds. We found that the EEEE genotype frequency at MC1R decreased from dark to light colors (black = 64.5%, brown = 67.5%, dark bay = 47.0%, bay = 16.5%, and chestnut = 0.0%), whereas the AAAA genotype frequency at ASIP increased as coat color lightened (black = 0.0%, brown = 22.9%, dark bay = 69.2%, and bay = 83.0%). When combined genotypes at MC1R and ASIP were examined, different advantage genotype combinations were found for each color: black EEEE-AaAa (64.5%), brown EEEE-AAAa (47.0%), dark bay EEEE-AAAA, and EEEe-AAAA (36.2% and 33.0%, totally 69.2%), bay EEEe-AAAA (69.6%), and chestnut EeEe-AAAA (62.6%). The χ2 test showed that the phenotypes of horse coat colors were significantly related with the genotypes of MC1R and ASIP (p < 0.001). Furthermore, in contrast to a previous study where AaAa was only found in black, chestnut, and gray horses, we also found this allele in brown, dark bay, bay, and white horses. These results indicated that MC1R and ASIP may synergistically affect the levels of melanin in equine coat colors and that additional genes are likely involved in regulating coat colors, especially for white and gray colors. Our research provides new data for further studies on the synergetic actions of MC1R and ASIP in coat color of horses.


Subject(s)
Agouti Signaling Protein/genetics , Genetic Variation , Horses/genetics , Receptor, Melanocortin, Type 1/genetics , Alleles , Animals , Breeding , Color , Female , Genotype , Horses/physiology , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...