Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Res Vet Sci ; 177: 105352, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996659

ABSTRACT

Consistent information and standardization procedures regarding the time of storage for frozen samples and the effects of storage time on enzyme activity are still missing in the literature. Thus, we evaluated the effects of different storage temperatures (-20 °C and - 80 °C), three repetitive freeze/thaw cycles, and 24-h mimic transportation on the activities of PON1 (paraoxonase and arylesterase), enzymes involved in the protection and detoxification processes of reactive molecules. PON1 enzymes' activity was validated on serum and heparinized plasma in horses. The results revealed that conditions and time of storage of blood samples for PON1 analyses altered the activities of both enzymes in both sample types, evidencing that these conditions can lead to protein degradation or general alteration. Specifically, paraoxonase and arylesterase activities significantly decreased among storage temperatures, with major effects detected at -20 °C. The repeated freeze/thaw cycles at -20 °C and 24-h mimic transport conditions also generated an expected degradation of the arylesterase in both serum and heparinized plasma while freeze/thaw cycles at -80 °C caused an increase of both arylesterase and paraoxonase activities on both sample types. In general, similar enzyme responses were detected between serum and heparinized plasma.


Subject(s)
Aryldialkylphosphatase , Carboxylic Ester Hydrolases , Freezing , Animals , Horses/blood , Aryldialkylphosphatase/blood , Aryldialkylphosphatase/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/blood , Heparin/pharmacology , Transportation , Plasma/enzymology , Plasma/chemistry , Enzyme Stability , Male , Specimen Handling/veterinary
2.
Sci Total Environ ; 946: 173809, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38848913

ABSTRACT

Drugs are chemical compounds used to treat and improve organic dysfunctions caused by diseases. These include analgesics, antibiotics, antidepressants, and antineoplastics. They can enter aquatic environments through wastewater streams, where their physico-chemical properties allow metabolites to distribute and accumulate. Current climate change and associated extreme weather events may significantly impact these substances' toxicity and aquatic organisms' sensitivity. Among the chemicals present in aquatic environments is the non-steroidal anti-inflammatory drug diclofenac (DIC), which the EU monitors due to its concentration levels. This study investigated the influence of temperature (control at 17 °C vs. 21 °C) on the effects of DIC (0 µg/L vs. 1 µg/L) in the mussel species Mytilus galloprovincialis. Significant results were observed between 17 and 21 °C. Organisms exposed to the higher temperature showed a decrease in several parameters, including metabolic capacity and detoxification, particularly with prolonged exposure. However, in some parameters, after 21 days, the M. galloprovincialis showed no differences from the control, indicating adaptation to the stress. The results of this study confirm that DIC concentrations in the environment, particularly when combined with increased temperatures, can produce oxidative stress and adversely affect M. galloprovincialis biochemical and physiological performance. This study also validates this species as a bioindicator for assessing environmental contamination with DIC. Beyond its direct impact on aquatic organisms, the presence of pharmaceuticals like DIC in the environment highlights the interconnectedness of human, animal, and ecosystem health, underscoring the One Health approach to understanding and mitigating environmental pollution.


Subject(s)
Diclofenac , Environmental Monitoring , Mytilus , Water Pollutants, Chemical , Mytilus/drug effects , Mytilus/physiology , Diclofenac/toxicity , Animals , Water Pollutants, Chemical/toxicity , Environmental Monitoring/methods , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Climate Change , Sentinel Species
3.
Sci Total Environ ; 940: 173453, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38802017

ABSTRACT

In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 µg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 µg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 µg/L; however, at 10.0 µg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.


Subject(s)
Caffeine , Mytilus , Temperature , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Mytilus/physiology , Mytilus/drug effects , Environmental Monitoring , Climate Change
4.
Animals (Basel) ; 14(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338164

ABSTRACT

The use of antimicrobials has greatly contributed to improving animal health. However, their inappropriate use reduces their effectiveness in treating bacterial infections and contributes to the selection of resistance. This study aimed to retrospectively evaluate the six-year pattern (2017-2022) of antimicrobial use in cats visiting the Veterinary Teaching Hospital (VTH) of the University of Pisa (Italy). The total number of prescribed antimicrobials, the number of animals for which an antimicrobial was prescribed, and the total number of antimicrobial prescriptions showed a significant time trend decrease during the study period, except for the fixed-dose combinations. The most frequently prescribed antimicrobials were amoxicillin-clavulanic acid (Synulox) (39.1%) followed by enrofloxacin (29.8%). These antimicrobials were mostly prescribed to treat infections affecting the genitourinary tract (~30%), followed by the gastrointestinal tract, skin, and respiratory system affections. Antimicrobials in empirical associations represented 13.0% of the total antimicrobial prescriptions, and the combination of amoxicillin-clavulanic acid (Synulox) with enrofloxacin accounted for the majority. The oral route represented the main route of administration of prescribed antimicrobials, followed by parenteral and topical ones. Amoxicillin-clavulanic acid (Synulox) (37.2%), ceftriaxone (2.7%), and tobramycin (2.8%) were the most prescribed antimicrobials for the oral, parenteral, and topical routes, respectively. Antimicrobial prescriptions complied with prudent use recommendations in terms of availability of diagnosis, respect to the dose range, duration of treatment, and the use of medicinal products approved for the species. On the contrary, antimicrobial susceptibility tests were used infrequently (5.2%), lacking compliance with the existing guidelines observed in companion animal practice. Overall, additional interventions are required not only to improve the responsible use of antimicrobials in our feline practice but also to implement antimicrobial stewardship programs, enhancing diagnostics such as culture and sensitivity testing in the future.

5.
Res Vet Sci ; 168: 105140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190777

ABSTRACT

Antimicrobial prescriptions of the University of Pisa and their compliance with prudent use recommendations were investigated over 11 years (2011-2021). At least one antimicrobial was always prescribed in surgical prophylaxis for the suture of wounds and in 33% of horses with signs of disease of a body system. Antimicrobials were administered in monotherapy (48%) in fixed dose combinations (21%) and empirical combinations (31%). Antimicrobials were mostly (63%) administered by parenteral route, while oral and topical antimicrobials accounted for 14% and 23% of prescriptions, respectively. Gentamicin, benzylpenicillin and ceftiofur were the most prescribed antimicrobials; aminoglycosides, penicillins and cephalosporins were the most common class of antimicrobial prescribed. Protected antimicrobials (WHO HPCIA and rifampicin) represented 24% of antimicrobial dispensations. The pattern of classes of antimicrobial used by body system was broad and included up to eight different pharmaceutical classes. The heterogeneity of antimicrobial use was confirmed by the estimate of the prescription diversity index. Antimicrobial prescriptions were in compliance with prudent use recommendations in terms of availability of diagnosis, respect of the dose range and duration of treatment On the contrary, principles of appropriate antimicrobial use have only been partially observed in relation to off-label use, use of antimicrobials in empirical combination, use of antimicrobial susceptibility tests and use of protected antimicrobials, suggesting that additional interventions are required to improve the responsible use of antimicrobials use in our equine practice.


Subject(s)
Anti-Infective Agents , Hospitals, Animal , Animals , Horses , Hospitals, Teaching , Anti-Bacterial Agents/therapeutic use , Prescriptions
6.
Vet Sci ; 10(12)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38133221

ABSTRACT

Procalcitonin (PCT) and protein carbonylated content (PCC) are promising biomarkers for bacterial infection and inflammation in veterinary medicine. This study examined plasma PCT and PCC levels in healthy cows (H) and cows with subclinical mastitis (SCM). A total of 130 cows (65 H and 65 SCM) were included in this study. Blood samples were collected, and plasma was frozen at -80 °C. PCT levels were determined using a bovine procalcitonin ELISA kit, while PCC was measured following the methodology of Levine et al. Statistical analysis revealed a significant difference in PCT levels between H (75.4 pg/mL) and SCM (107.3 pg/mL) cows (p < 0.001) and significantly lower concentrations of PCC in the SCM group (H: 0.102 nmol/mL/mg, SCM: 0.046 nmol/mL/mg; p < 0.001). The PCT cut-off value for distinguishing healthy and subclinical mastitis animals was >89.8 pg/mL (AUC 0.695), with a sensitivity of 66.2% and specificity of 69.2%. PCT showed potential value as a diagnostic tool to help in decision making for subclinical mastitis cases, while PCC requires further studies to investigate the trend of this biomarker during localized pathology.

SELECTION OF CITATIONS
SEARCH DETAIL