Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Viruses ; 16(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38932138

ABSTRACT

Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.


Subject(s)
DNA, Viral , Genome, Viral , Host-Pathogen Interactions , Virus Replication , Humans , DNA, Viral/genetics , DNA, Viral/metabolism , DNA Viruses/genetics , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Herpesviridae/genetics , Herpesviridae/metabolism , Herpesviridae/physiology , Vaccinia virus/genetics
2.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38817634

ABSTRACT

Proteomic analysis of viral and cellular proteins that copurify with the herpes simplex virus type-1 (HSV-1) genome revealed that the cellular Integrator complex associates with viral DNA throughout infection. The Integrator complex plays a key role in the regulation of transcription of cellular coding and non-coding RNAs. We therefore predicted that it may regulate transcription of viral genes. Here, we demonstrate that knockdown of the Integrator complex subunit, Ints3, has minimal effect on HSV-1 infection. Despite reducing viral yield during low multiplicity infection, Ints3 knockdown had no effect on viral DNA replication, mRNA expression, or yield during high multiplicity infection.

3.
PLoS Pathog ; 19(7): e1011539, 2023 07.
Article in English | MEDLINE | ID: mdl-37486931

ABSTRACT

Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , DNA Replication , Virus Replication , DNA, Viral/genetics , Herpesvirus 1, Human/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism
5.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: mdl-34696446

ABSTRACT

DNA replication is an integral step in the herpes simplex virus type 1 (HSV-1) life cycle that is coordinated with the cellular DNA damage response, repair and recombination of the viral genome, and viral gene transcription. HSV-1 encodes its own DNA replication machinery, including an origin binding protein (UL9), single-stranded DNA binding protein (ICP8), DNA polymerase (UL30), processivity factor (UL42), and a helicase/primase complex (UL5/UL8/UL52). In addition, HSV-1 utilizes a combination of accessory viral and cellular factors to coordinate viral DNA replication with other viral and cellular processes. The purpose of this review is to outline the roles of viral and cellular proteins in HSV-1 DNA replication and replication-coupled processes, and to highlight how HSV-1 may modify and adapt cellular proteins to facilitate productive infection.


Subject(s)
DNA Replication/genetics , Herpesvirus 1, Human/metabolism , Virus Replication/physiology , DNA Helicases/genetics , DNA Primase/genetics , DNA Replication/physiology , DNA, Viral/genetics , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/genetics , Genome, Viral/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Humans , Viral Proteins/genetics , Virus Replication/genetics
6.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: mdl-32699090

ABSTRACT

Lysine-specific demethylase 1 (LSD1) targets cellular proteins, including histone H3, p53, E2F, and Dnmt1, and is involved in the regulation of gene expression, DNA replication, the cell cycle, and the DNA damage response. LSD1 catalyzes demethylation of histone H3K9 associated with herpes simplex virus 1 (HSV-1) immediate early (IE) promoters and is necessary for IE gene expression, viral DNA replication, and reactivation from latency. We previously found that LSD1 associates with HSV-1 replication forks and replicating viral DNA, suggesting that it may play a direct role in viral replication or coupled processes. We investigated the effects of the LSD1 inhibitor SP-2509 on the HSV-1 life cycle. Unlike previously investigated LSD1 inhibitors tranylcypromine (TCP) and OG-L002, which covalently attach to the LSD1 cofactor flavin adenine dinucleotide (FAD) to inhibit demethylase activity, SP-2509 has previously been shown to inhibit LSD1 protein-protein interactions. We found that SP-2509 does not inhibit HSV-1 IE gene expression or transcription factor and RNA polymerase II (Pol II) association with viral DNA prior to the onset of replication. However, SP-2509 does inhibit viral DNA replication, late gene expression, and virus production. We used EdC labeling of nascent viral DNA to image aberrant viral replication compartments that form in the presence of SP-2509. Treatment resulted in the formation of small replication foci that colocalize with replication proteins but are defective for Pol II recruitment. Taken together, these data highlight a potential new role for LSD1 in the regulation of HSV-1 DNA replication and gene expression after the onset of DNA replication.IMPORTANCE Treatment of HSV-1-infected cells with SP-2509 blocked viral DNA replication, gene expression after the onset of DNA replication, and virus production. These data support a potential new role for LSD1 in the regulation of viral DNA replication and successive steps in the virus life cycle, and further highlight the promising potential to utilize LSD1 inhibition as an antiviral approach.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Histone Demethylases/drug effects , Hydrazines/pharmacology , Sulfonamides/pharmacology , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , DNA Replication/drug effects , DNA, Viral , Gene Expression Regulation, Viral/drug effects , Genes, Immediate-Early , Herpes Simplex/drug therapy , Histones/metabolism , Humans , Promoter Regions, Genetic , Vero Cells
7.
mBio ; 9(4)2018 07 17.
Article in English | MEDLINE | ID: mdl-30018111

ABSTRACT

Herpesviruses utilize multiple mechanisms to redirect host proteins for use in viral processes and to avoid recognition and repression by the host. To investigate dynamic interactions between herpes simplex virus type 1 (HSV-1) DNA and viral and host proteins throughout infection, we developed an approach to identify proteins that associate with the infecting viral genome from nuclear entry through packaging. To accomplish this, virus stocks were prepared in the presence of ethynyl-modified nucleotides to enable covalent tagging of viral genomes after infection for analysis of viral genome-protein interactions by imaging or affinity purification. Affinity purification was combined with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry to enable the distinction between proteins that were brought into the cell by the virus or expressed within the infected cell before or during infection. We found that input viral DNA progressed within 6 h through four temporal stages where the genomes sequentially (i) interacted with intrinsic antiviral and DNA damage response proteins, (ii) underwent a robust transcriptional switch mediated largely by ICP4, (iii) engaged in replication, repair, and continued transcription, and then (iv) transitioned to a more transcriptionally inert state engaging de novo-synthesized viral structural components while maintaining interactions with replication proteins. Using a combination of genetic, imaging, and proteomic approaches, we provide a new and temporally compressed view of the HSV-1 life cycle based on input genome-proteome dynamics.IMPORTANCE Herpesviruses are highly prevalent and ubiquitous human pathogens. Studies of herpesviruses and other viruses have previously been limited by the ability to directly study events that occur on the viral DNA throughout infection. We present a new powerful approach, which allows for the temporal investigation of viral genome-protein interactions at all phases of infection. This work has integrated many results from previous studies with the discovery of novel factors potentially involved in viral infection that may represent new antiviral targets. In addition, the study provides a new view of the HSV-1 life cycle based on genome-proteome dynamics.


Subject(s)
Cell Nucleus/virology , Genome, Viral/physiology , Herpes Simplex/pathology , Herpesvirus 1, Human/physiology , Nuclear Proteins/metabolism , Viral Proteins/metabolism , Virus Replication , Cell Line , Cell Nucleus/metabolism , DNA Damage , DNA Repair , DNA Replication , DNA, Viral/genetics , DNA, Viral/metabolism , Genome, Viral/genetics , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/metabolism , Nuclear Proteins/genetics , Transcription Factors/metabolism , Transcription, Genetic , Viral Proteins/biosynthesis , Viral Proteins/genetics , Virus Assembly , Virus Internalization
9.
J Vis Exp ; (126)2017 08 31.
Article in English | MEDLINE | ID: mdl-28892026

ABSTRACT

The goal of this protocol is to isolate herpes simplex virus type 1 (HSV-1) DNA from infected cells for the identification of associated viral and cellular proteins by mass spectrometry. Although proteins that interact with viral genomes play major roles in determining the outcome of infection, a comprehensive analysis of viral genome associated proteins was not previously feasible. Here we demonstrate a method that enables the direct purification of HSV-1 genomes from infected cells. Replicating viral DNA is selectively labeled with modified nucleotides that contain an alkyne functional group. Labeled DNA is then specifically and irreversibly tagged via the covalent attachment of biotin azide via a copper(I)-catalyzed azide-alkyne cycloaddition or click reaction. Biotin-tagged DNA is purified on streptavidin-coated beads and associated proteins are eluted and identified by mass spectrometry. This method enables the selective targeting and isolation of HSV-1 replication forks or whole genomes from complex biological environments. Furthermore, adaptation of this approach will allow for the investigation of various aspects of herpesviral infection, as well as the examination of the genomes of other DNA viruses.


Subject(s)
DNA, Viral/genetics , Viral Proteins/genetics , Humans
10.
mBio ; 8(3)2017 06 13.
Article in English | MEDLINE | ID: mdl-28611249

ABSTRACT

Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production.IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Transcription Elongation, Genetic , Animals , Cell Line , Chlorocebus aethiops , Genes, Viral , Genome, Viral , High-Throughput Nucleotide Sequencing , Immediate-Early Proteins/physiology , Mutation , Phosphorylation , RNA Polymerase II/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics
11.
PLoS Pathog ; 13(1): e1006166, 2017 01.
Article in English | MEDLINE | ID: mdl-28095497

ABSTRACT

Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4-6 hours post infection. In this study, we selectively purify HSV-1 replication forks and associated proteins from virus-infected cells and identify select viral and cellular replication, repair, and transcription factors that associate with viral replication forks. Pulse chase analyses and imaging studies reveal temporal and spatial dynamics between viral replication forks and associated proteins and demonstrate that several DNA repair complexes and key transcription factors are recruited to or near replication forks. Consistent with these observations we show that the initiation of viral DNA replication is sufficient to license late gene transcription. These data provide insight into mechanisms that couple HSV-1 DNA replication with transcription and repair for the coordinated expression and maintenance of the viral genome.


Subject(s)
DNA Replication/genetics , Herpes Simplex/genetics , Herpesvirus 1, Human/growth & development , Host-Pathogen Interactions/genetics , Virus Replication/genetics , Animals , Cell Line , Chlorocebus aethiops , DNA, Viral/analysis , DNA, Viral/genetics , Fluorescent Antibody Technique , Genes, Viral/genetics , Genome, Viral/genetics , Herpesvirus 1, Human/genetics , Host-Pathogen Interactions/physiology , Humans , Mass Spectrometry , Vero Cells , Virus Replication/physiology
12.
PLoS Pathog ; 11(5): e1004939, 2015 May.
Article in English | MEDLINE | ID: mdl-26018390

ABSTRACT

Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral , Herpes Simplex/metabolism , Herpesvirus 1, Human/physiology , Lung/metabolism , Nuclear Proteins/metabolism , Viral Proteins/metabolism , Animals , Blotting, Western , Cell Nucleus/genetics , Cells, Cultured , Chlorocebus aethiops , Chromatin Assembly and Disassembly , DNA Replication , Fluorescent Antibody Technique , Herpes Simplex/genetics , Herpes Simplex/virology , Humans , Lung/cytology , Lung/embryology , Nuclear Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells , Viral Proteins/genetics , Virus Replication
13.
RNA ; 19(12): 1639-47, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24129494

ABSTRACT

Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3' end of 5.8S rRNA and the 5' end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.


Subject(s)
Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA, Ribosomal Spacer/genetics , Inverted Repeat Sequences , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , Ribosomal Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
14.
Nucleic Acids Res ; 41(16): 7889-904, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23788678

ABSTRACT

Ribosome biogenesis requires ∼200 assembly factors in Saccharomyces cerevisiae. The pre-ribosomal RNA (rRNA) processing defects associated with depletion of most of these factors have been characterized. However, how assembly factors drive the construction of ribonucleoprotein neighborhoods and how structural rearrangements are coupled to pre-rRNA processing are not understood. Here, we reveal ATP-independent and ATP-dependent roles of the Has1 DEAD-box RNA helicase in consecutive pre-rRNA processing and maturation steps for construction of 60S ribosomal subunits. Has1 associates with pre-60S ribosomes in an ATP-independent manner. Has1 binding triggers exonucleolytic trimming of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and drives incorporation of ribosomal protein L17 with domain I of 5.8S/25S rRNA. ATP-dependent activity of Has1 promotes stable association of additional domain I ribosomal proteins that surround the polypeptide exit tunnel, which are required for downstream processing of 27SB pre-rRNA. Furthermore, in the absence of Has1, aberrant 27S pre-rRNAs are targeted for irreversible turnover. Thus, our data support a model in which Has1 helps to establish domain I architecture to prevent pre-rRNA turnover and couples domain I folding with consecutive pre-rRNA processing steps.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/physiology , Nucleic Acid Conformation , RNA Precursors/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal, 5.8S/chemistry , RNA, Ribosomal, 5.8S/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Saccharomyces cerevisiae Proteins/physiology
15.
J Nucleic Acids ; 2012: 816237, 2012.
Article in English | MEDLINE | ID: mdl-23008758

ABSTRACT

Alternative pre-mRNA splicing has a major impact on cellular functions and development with the potential to fine-tune cellular localization, posttranslational modification, interaction properties, and expression levels of cognate proteins. The plasticity of regulation sets the stage for cells to adjust the relative levels of spliced mRNA isoforms in response to stress or stimulation. As part of an exon profiling analysis of mouse cortical neurons stimulated with high KCl to induce membrane depolarization, we detected a previously unrecognized exon (E24a) of the CASK gene, which encodes for a conserved peptide insertion in the guanylate kinase interaction domain. Comparative sequence analysis shows that E24a appeared selectively in mammalian CASK genes as part of a >3,000 base pair intron insertion. We demonstrate that a combination of a naturally defective 5' splice site and negative regulation by several splicing factors, including SC35 (SRSF2) and ASF/SF2 (SRSF1), drives E24a skipping in most cell types. However, this negative regulation is countered with an observed increase in E24a inclusion after neuronal stimulation and NMDA receptor signaling. Taken together, E24a is typically a skipped exon, which awakens during neuronal stimulation with the potential to diversify the protein interaction properties of the CASK polypeptide.

16.
PLoS Genet ; 5(8): e1000595, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19680430

ABSTRACT

Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key role in the brain region-specific silencing of the NI exon of the NMDA R1 receptor. However, the sequence motifs utilized by this factor for specific target exon selection and its role in splicing silencing are not understood. Here, we use chemical modification footprinting to map the contact sites of CUGBP2 to GU-rich motifs closely positioned at the boundaries of the branch sites of the NI exon, and we demonstrate a mechanistic role for this specific arrangement of motifs for the regulation of branchpoint formation. General support for a branch site-perimeter-binding model is indicated by the identification of a group of novel target exons with a similar configuration of motifs that are silenced by CUGBP2. These results reveal an autoregulatory role for CUGBP2 as indicated by its direct interaction with functionally significant RNA motifs surrounding the branch sites upstream of exon 6 of the CUGBP2 transcript itself. The perimeter-binding model explains how CUGBP2 can effectively embrace the branch site region to achieve the specificity needed for the selection of exon targets and the fine-tuning of alternative splicing patterns.


Subject(s)
Alternative Splicing , Gene Expression Regulation , RNA Precursors/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Base Sequence , CELF Proteins , Cell Line , Exons , Humans , Mice , Molecular Sequence Data , Nucleic Acid Conformation , Protein Binding , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA-Binding Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...