Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189604

ABSTRACT

Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stem-like structures within the leaf-like ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.

2.
Plant Cell Environ ; 47(8): 2895-2910, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38623040

ABSTRACT

Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the control. Interaction and expression assays demonstrated that ZjTCP7 interacted with the ZjFT-ZjFD module, thereby enhancing the ability of these genes to directly bind to the ZjAP1 promoter. The effectors SJP1 and SJP2 unravelled the florigen activation complex by specifically destabilising ZjTCP7 and ZjFD to delay floral initiation. Moreover, the shoot branching of the ZjTCP7-SRDX transgenic Arabidopsis lines were comparable to those of the SJP1/2 lines, suggesting the involvement of ZjTCP7 in the regulation of shoot branching. ZjTCP7 interacted with the branching repressor ZjBRC1 to enhance suppression of the auxin efflux carrier ZjPIN3 expression. ZjTCP7 also directly bound to and upregulated the auxin biosynthesis gene ZjYUCCA2, thereby promoting auxin accumulation. Our findings confirm that ZjTCP7 serves as a bifunctional regulator destabilised by the effectors SJP1 and SJP2 to modulate plant development.


Subject(s)
Arabidopsis , Flowers , Phytoplasma , Plant Shoots , Plants, Genetically Modified , Phytoplasma/physiology , Flowers/growth & development , Flowers/genetics , Plant Shoots/growth & development , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/growth & development , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Promoter Regions, Genetic/genetics , Indoleacetic Acids/metabolism
3.
J Exp Bot ; 75(10): 3054-3069, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38320293

ABSTRACT

Phytoplasmas manipulate host plant development to benefit insect vector colonization and their own invasion. However, the virulence factors and mechanisms underlying small-leaf formation caused by jujube witches' broom (JWB) phytoplasmas remain largely unknown. Here, effectors SJP1 and SJP2 from JWB phytoplasmas were identified to induce small-leaf formation in jujube (Ziziphus jujuba). In vivo interaction and expression assays showed that SJP1 and SJP2 interacted with and stabilized the transcription factor ZjTCP2. Overexpression of SJP1 and SJP2 in jujube induced ZjTCP2 accumulation. In addition, the abundance of miRNA319f_1 was significantly reduced in leaves of SJP1 and SJP2 transgenic jujube plants and showed the opposite pattern to the expression of its target, ZjTCP2, which was consistent with the pattern in diseased leaves. Overexpression of ZjTCP2 in Arabidopsis promoted ectopic leaves arising from the adaxial side of cotyledons and reduced leaf size. Constitutive expression of the miRNA319f_1 precursor in the 35S::ZjTCP2 background reduced the abundance of ZjTCP2 mRNA and reversed the cotyledon and leaf defects in Arabidopsis. Therefore, these observations suggest that effectors SJP1 and SJP2 induced small-leaf formation, at least partly, by interacting with and activating ZjTCP2 expression both at the transcriptional and the protein level, providing new insights into small-leaf formation caused by phytoplasmas in woody plants.


Subject(s)
Phytoplasma , Plant Leaves , Plant Proteins , Transcription Factors , Ziziphus , Ziziphus/microbiology , Ziziphus/genetics , Plant Leaves/microbiology , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Phytoplasma/physiology , Plant Diseases/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Hortic Res ; 10(9): uhad148, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37691966

ABSTRACT

Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.

5.
Plant Cell Environ ; 44(10): 3257-3272, 2021 10.
Article in English | MEDLINE | ID: mdl-34189742

ABSTRACT

Comprehensively controlling phytoplasma-associated jujube witches' broom (JWB) disease is extremely challenging for the jujube industry. Although the pathogenesis of phytoplasma disease has been highlighted in many plant species, the release of lateral buds from dormancy under JWB phytoplasma infection has not been characterized in woody perennial jujube. Here, two 16SrV-B group phytoplasma effectors, SJP1 and SJP2, were experimentally determined to induce witches' broom with increased lateral branches. In vivo interaction and subcellular localization analyses showed that both SJP1 and SJP2 were translocated from the cytoplasm to the nucleus to target the CYC/TB1-TCP transcription factor ZjBRC1. The N- and C-terminal coiled-coil domains of SJP1 and SJP2 were required for the TCP-binding ability. ZjBRC1 bound directly to the auxin efflux carrier ZjPIN1c/3 promoters and down-regulated their expression to promote the accumulation of endogenous auxin indole-3-acetic acid in jujube calli. Furthermore, JWB phytoplasma infection suppressed ZjBRC1 accumulation and induced ZjPIN1c/3 expression to stimulate lateral bud outgrowth. Therefore, SJP1 and SJP2 stimulate lateral bud outgrowth, at least partly, by repressing the ZjBRC1-controlled auxin efflux channel in jujube, representing a potential strategy for comprehensive phytoplasma-associated disease control and a resource for gene editing breeding to create new cultivars with varying degrees of shoot branching.


Subject(s)
Indoleacetic Acids/metabolism , Plant Proteins/genetics , Signal Transduction/genetics , Ziziphus/growth & development , Ziziphus/genetics , Phytoplasma/physiology , Plant Proteins/metabolism , Ziziphus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL