Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
bioRxiv ; 2024 May 12.
Article En | MEDLINE | ID: mdl-38766039

Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.

2.
iScience ; 27(4): 109443, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38558935

Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.

3.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38447569

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Autophagy/physiology , Phosphatidylinositol Phosphates/metabolism , Autophagy-Related Proteins/metabolism , Autophagosomes/metabolism
4.
Cell Rep ; 42(11): 113393, 2023 11 28.
Article En | MEDLINE | ID: mdl-37934665

TmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation. We demonstrate that, by protecting flagella-related transcripts, TmaR controls flagella production and, thus, cell motility and biofilm formation. These results connect PS in bacteria to survival and provide an explanation for the linkage between metabolism and motility. Intriguingly, a point mutation or increase in its cellular concentration induces irreversible liquid-to-solid transition of TmaR, similar to human disease-causing proteins, which affects cell morphology and division.


Bacteria , Biomolecular Condensates , Humans , Proteins , Flagella/physiology , Escherichia coli/genetics , Tyrosine
5.
Nat Plants ; 9(5): 817-831, 2023 05.
Article En | MEDLINE | ID: mdl-37127748

Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.


Cannabinoids , Cannabis , Humans , Cannabinoids/metabolism , Cannabis/genetics , Flowers/metabolism , Plant Leaves/metabolism
6.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Article En | MEDLINE | ID: mdl-36475518

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


GATA2 Deficiency , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Child , Humans , Mice , Animals , GATA2 Deficiency/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/pathology , Hematopoietic Stem Cells/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism
7.
J Am Chem Soc ; 144(49): 22440-22445, 2022 12 14.
Article En | MEDLINE | ID: mdl-36469805

Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.


Guanine , Zebrafish , Animals
8.
Mol Cell Proteomics ; 21(11): 100418, 2022 11.
Article En | MEDLINE | ID: mdl-36180036

Importin ß1 (KPNB1) is a nucleocytoplasmic transport factor with critical roles in both cytoplasmic and nucleocytoplasmic transport, hence there is keen interest in the characterization of its subcellular interactomes. We found limited efficiency of BioID in the detection of importin complex cargos and therefore generated a highly specific and sensitive anti-KPNB1 monoclonal antibody to enable biotinylation by antibody recognition analysis of importin ß1 interactomes. The monoclonal antibody recognizes an epitope comprising residues 301-320 of human KPBN1 and strikingly is highly specific for cytoplasmic KPNB1 in diverse applications, with little reaction with KPNB1 in the nucleus. Biotinylation by antibody recognition with this novel antibody revealed numerous new interactors of importin ß1, expanding the KPNB1 interactome to cytoplasmic and signaling complexes that highlight potential new functions for the importins complex beyond nucleocytoplasmic transport. Data are available via ProteomeXchange with identifier PXD032728.


Antibodies, Monoclonal , Karyopherins , Humans , Karyopherins/metabolism , Antibodies, Monoclonal/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Cytoplasm/metabolism , Cell Nucleus/metabolism
9.
Am J Pathol ; 192(8): 1122-1135, 2022 08.
Article En | MEDLINE | ID: mdl-35659946

Wound healing typically recruits the immune and vascular systems to restore tissue structure and function. However, injuries to the enthesis, a hypocellular and avascular tissue, often result in fibrotic scar formation and loss of mechanical properties, severely affecting musculoskeletal function and life quality. This raises questions about the healing capabilities of the enthesis. Herein, this study established an injury model to the Achilles entheses of neonatal mice to study the effectiveness of early-age enthesis healing. Histology and immunohistochemistry analyses revealed an atypical process that did not involve inflammation or angiogenesis. Instead, healing was mediated by secretion of collagen types I and II by resident cells, which formed a permanent hypocellular and avascular scar. Transmission electron microscopy showed that the cellular response to injury, including endoplasmic reticulum stress, autophagy, and cell death, varied between the tendon and cartilage ends of the enthesis. Single-molecule in situ hybridization, immunostaining, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays verified these differences. Finally, gait analysis showed that these processes effectively restored function of the injured leg. These findings reveal a novel healing mechanism in neonatal entheses, whereby local extracellular matrix secretion by resident cells forms an acellular extracellular matrix deposit without inflammation, allowing gait restoration. These insights into the healing mechanism of a complex transitional tissue may lead to new therapeutic strategies for adult enthesis injuries.


Cicatrix , Wound Healing , Animals , Extracellular Matrix , Inflammation , Mice , Tendons , Wound Healing/physiology
10.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Article En | MEDLINE | ID: mdl-35182483

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Bacterial Infections , Listeriosis , B-Lymphocytes , Germinal Center , Humans , Monocytes
11.
J Cell Biol ; 220(11)2021 11 01.
Article En | MEDLINE | ID: mdl-34694322

Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease.


Cell Nucleus/metabolism , Mitochondria/metabolism , Phospholipids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis/physiology , Membrane Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism
12.
Chem Res Toxicol ; 34(6): 1588-1603, 2021 06 21.
Article En | MEDLINE | ID: mdl-34033466

Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.


Antineoplastic Agents, Phytogenic/pharmacology , Epithelial Cells/drug effects , Lung/drug effects , Plant Extracts/pharmacology , Tars/pharmacology , Wood/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biomass , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solubility , Tars/chemistry , Tars/isolation & purification , Tumor Cells, Cultured , Water/chemistry
13.
Autophagy ; 17(10): 3082-3095, 2021 10.
Article En | MEDLINE | ID: mdl-33218264

Mutations in the coding sequence of human TECPR2 were recently linked to spastic paraplegia type 49 (SPG49), a hereditary neurodegenerative disorder involving intellectual disability, autonomic-sensory neuropathy, chronic respiratory disease and decreased pain sensitivity. Here, we report the generation of a novel CRISPR-Cas9 tecpr2 knockout (tecpr2-/-) mouse that exhibits behavioral pathologies observed in SPG49 patients. tecpr2-/- mice develop neurodegenerative patterns in an age-dependent manner, manifested predominantly as neuroaxonal dystrophy in the gracile (GrN) and cuneate nuclei (CuN) of the medulla oblongata in the brainstem and dorsal white matter column of the spinal cord. Age-dependent correlation with accumulation of autophagosomes suggests compromised targeting to lysosome. Taken together, our findings establish the tecpr2 knockout mouse as a potential model for SPG49 and ascribe a new role to TECPR2 in macroautophagy/autophagy-related neurodegenerative disorders.


Autophagosomes , Carrier Proteins , Nerve Tissue Proteins , Neuroaxonal Dystrophies , Animals , Autophagosomes/metabolism , Autophagy/genetics , Carrier Proteins/genetics , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics
14.
Nat Commun ; 11(1): 409, 2020 01 21.
Article En | MEDLINE | ID: mdl-31964869

The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.


Golgi Apparatus/metabolism , Ionophores/therapeutic use , Multiple Myeloma/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteostasis/physiology , Animals , Apoptosis/drug effects , Autoantigens/metabolism , Cell Line, Tumor/transplantation , Disease Models, Animal , Golgi Apparatus/drug effects , HEK293 Cells , Humans , Intracellular Membranes/metabolism , Ionophores/pharmacology , Membrane Proteins/metabolism , Mice , Monensin/pharmacology , Monensin/therapeutic use , Multiple Myeloma/pathology , Proteolysis/drug effects , Proteostasis/drug effects , Ubiquitination/drug effects , Valosin Containing Protein/metabolism
16.
Dev Cell ; 48(1): 115-125.e4, 2019 01 07.
Article En | MEDLINE | ID: mdl-30503750

Pancreatic beta cells have been shown to be heterogeneous at multiple levels. However, spatially interrogating transcriptional heterogeneity in the intact tissue has been challenging. Here, we developed an optimized protocol for single-molecule transcript imaging in the intact pancreas and used it to identify a sub-population of "extreme" beta cells with elevated mRNA levels of insulin and other secretory genes. Extreme beta cells contain higher ribosomal and proinsulin content but lower levels of insulin protein in fasted states, suggesting they may be tuned for basal insulin secretion. They exhibit a distinctive intra-cellular polarization pattern, with elevated mRNA concentrations in an apical ER-enriched compartment, distinct from the localization of nascent and mature proteins. The proportion of extreme cells increases in db/db diabetic mice, potentially facilitating the required increase in basal insulin. Our results thus highlight a sub-population of beta cells that may carry distinct functional roles along physiological and pathological timescales.


Genetic Heterogeneity , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/physiology , Mice, Transgenic , Proinsulin/metabolism
17.
J Clin Invest ; 128(12): 5465-5478, 2018 12 03.
Article En | MEDLINE | ID: mdl-30277471

Chronic lymphocytic leukemia (CLL) is characterized by clonal proliferation and progressive accumulation of mature B lymphocytes in the peripheral blood, lymphoid tissues, and bone marrow. CLL is characterized by profound immune defects leading to severe infectious complications. T cells are numerically, phenotypically, and functionally highly abnormal in CLL, with only limited ability to exert antitumor immune responses. Exhaustion of T cells has also been suggested to play an important role in antitumor responses. CLL-mediated T cell exhaustion is achieved by the aberrant expression of several inhibitory molecules on CLL cells and their microenvironment, prominently the programmed cell death ligand 1/programmed cell death 1 (PD-L1/PD-1) receptors. Previously, we showed that CD84, a member of the SLAM family of receptors, bridges between CLL cells and their microenvironment. In the current study, we followed CD84 regulation of T cell function. We showed that cell-cell interaction mediated through human and mouse CD84 upregulates PD-L1 expression on CLL cells and in their microenvironment and PD-1 expression on T cells. This resulted in suppression of T cell responses and activity in vitro and in vivo. Thus, our results demonstrate a role for CD84 in the regulation of immune checkpoints by leukemia cells and identify CD84 blockade as a therapeutic strategy to reverse tumor-induced immune suppression.


B7-H1 Antigen/immunology , Gene Expression Regulation, Leukemic/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Neoplasm Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , Signaling Lymphocytic Activation Molecule Family/immunology , Animals , B7-H1 Antigen/genetics , Gene Expression Regulation, Leukemic/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Programmed Cell Death 1 Receptor/genetics , Signaling Lymphocytic Activation Molecule Family/genetics
18.
Haematologica ; 102(5): 874-882, 2017 05.
Article En | MEDLINE | ID: mdl-28154084

A novel therapeutic approach in cancer, attempting to stimulate host anti-tumor immunity, involves blocking of immune checkpoints. Lymphocyte activation gene 3 (LAG3) is an immune checkpoint receptor expressed on activated/exhausted T cells. When engaged by the major histocompatibility complex (MHC) class II molecules, LAG3 negatively regulates T-cell function, thereby contributing to tumor escape. Intriguingly, a soluble LAG3 variant activates both immune and malignant MHC class II-presenting cells. In the study herein, we examined the role of LAG3 in the pathogenesis of chronic lymphocytic leukemia, an MHC class II-presenting malignancy, and show that chronic lymphocytic leukemia cells express and secrete LAG3. High levels of surface and soluble LAG3 were associated with the unmutated immunoglobulin variable heavy chain leukemic subtype and a shorter median time from diagnosis to first treatment. Utilizing a mechanism mediated through MHC class II engagement, recombinant soluble LAG3-Ig fusion protein, LAG3-Fc, activated chronic lymphocytic leukemia cells, induced anti-apoptotic pathways and protected the cells from spontaneous apoptosis, effects mediated by SYK, BTK and MAPK signaling. Moreover, LAG3 blocking antibody enhanced in vitro T-cell activation. Our data suggest that soluble LAG3 promotes leukemic cell activation and anti-apoptotic effects through its engagement with MHC class II. Furthermore, MHC class II-presenting chronic lymphocytic leukemia cells may affect LAG3-presenting T cells and impose immune exhaustion on their microenvironment; hence, blocking LAG3-MHC class II interactions is a potential therapeutic target in chronic lymphocytic leukemia.


Antigens, CD/immunology , Histocompatibility Antigens Class II/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Activation/immunology , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis/drug effects , Apoptosis/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Molecular Targeted Therapy/methods , Protein Binding/drug effects , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation Gene 3 Protein
19.
Haematologica ; 101(12): 1553-1562, 2016 12.
Article En | MEDLINE | ID: mdl-27443285

I In the last decade, the B-cell receptor has emerged as a pivotal stimulus in the pathogenesis of chronic lymphocytic leukemia, and a very feasible therapeutic target in this disease. B-cell receptor responsiveness in chronic lymphocytic leukemia cells is heterogeneous among patients and correlates with aggressiveness of the disease. Here we show, for the first time, that SLP76, a key scaffold protein in T-cell receptor signaling, is ectopically expressed in chronic lymphocytic leukemia cells, with variable levels among patients, and correlates positively with unmutated immunoglobulin heavy chain variable gene status and ZAP-70 expression. We found that SLP76 was functionally active in chronic lymphocytic leukemia cells. A SYK-dependent basal level of phosphorylated SLP76 exists in the cells, and upon B-cell receptor engagement, SLP76 tyrosine phosphorylation is significantly enhanced concomitantly with increased physical association with BTK. B-cell receptor-induced SLP76 phosphorylation is mediated by upstream signaling events involving LCK and SYK. Knockdown of SLP76 in the cells resulted in decreased induction of BTK, PLCγ2 and IκB phosphorylation, as well as cell viability after B-cell receptor activation with anti-IgM. Consistent with our biochemical findings, high total SLP76 expression in chronic lymphocytic leukemia cells correlated with a more aggressive disease course. IN CONCLUSION: SLP76 is ectopically expressed in chronic lymphocytic leukemia cells where it plays a role in B-cell receptor signaling.


Adaptor Proteins, Signal Transducing/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Phosphoproteins/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Humans , Immunoglobulin Heavy Chains/genetics , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Phosphoproteins/genetics , Phosphorylation , Prognosis , Protein Binding , Syk Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
20.
Cytometry B Clin Cytom ; 90(3): 257-66, 2016 05.
Article En | MEDLINE | ID: mdl-26082241

BACKGROUND: Cellular aggregation is a physiological response of lymphocytes to various extracellular stimuli. Currently, lymphocytes aggregation is only evaluated qualitatively or by semiquantitative methods. In this study, we assessed the capacity of flow cytometry to measure lymphocytes aggregation in a quantitative, accurate, and reproducible manner, and examined the significance of aggregation responses in various lymphoproliferative diseases. METHODS: Extracellular triggers such as anti-CD19 antibodies or phorbol ester were utilized to induce lymphoid cells aggregation in a concentration dependent manner. Aggregation was quantified by flow cytometry based on the forward or side scatter (SSC), or by dark-field SSC of aggregates measured by ImageStreamX. Accuracy, reproducibility, and limitations of the methodology were evaluated. Aggregation responses were measured in various types of lymphoproliferative diseases, and correlated with immunophenotyping and IGHV mutational status in chronic lymphocytic leukemia. RESULTS: Lymphoid aggregates provoked by extracellular stimuli elevate the forward and SSC signals relatively to the number of cells in each event. Aggregation responses vary among different types of lymphoproliferative diseases. Moreover, elevated levels of CD19-induced aggregation are associated with aberrant chronic lymphocytic leukemia characteristics, but not with IGHV mutational status of the disease CONCLUSIONS: We have demonstrated that flow cytometry can provide accurate and reproducible measurement of both primary as well as T and B cell lines aggregation in response to extracellular stimuli. The use of quantitative evaluation of activation driven or other cellular aggregation may provide an analytical tool to elucidate biochemical and molecular mechanisms associated with lymphoproliferative diseases. © 2015 International Clinical Cytometry Society.


Flow Cytometry , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Adult , Aged , Aged, 80 and over , Antigens, CD/analysis , Antigens, CD/immunology , B-Lymphocytes/immunology , Flow Cytometry/methods , Humans , Immunophenotyping/methods , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/pathology , Middle Aged , Reproducibility of Results
...