Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 11(6): e0397622, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37800971

ABSTRACT

IMPORTANCE: In malaria drug discovery, understanding the mode of action of lead compounds is important as it helps in predicting the potential emergence of drug resistance in the field when these drugs are eventually deployed. In this study, we have employed metabolomics technologies to characterize the potential targets of anti-malarial drug candidates in the developmental pipeline at NITD. We show that NITD fast-acting leads belonging to spiroindolone and imidazothiadiazole class induce a common biochemical theme in drug-exposed malaria parasites which is similar to another fast-acting, clinically available drug, DHA. These biochemical features which are absent in a slower acting NITD lead (GNF17) point to hemoglobin digestion and inhibition of the pyrimidine pathway as potential action points for these drugs. These biochemical themes can be used to identify and inform on the mode of action of fast drug candidates of similar profiles in future drug discovery programs.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Drug Discovery , Malaria, Falciparum/drug therapy , Drug Resistance
2.
Science ; 380(6652): 1349-1356, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37384702

ABSTRACT

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.


Subject(s)
Chagas Disease , Topoisomerase II Inhibitors , Triazoles , Trypanosoma , Trypanosomiasis, African , Animals , Humans , Mice , Chagas Disease/drug therapy , Cryoelectron Microscopy , DNA Topoisomerases, Type II/metabolism , Trypanosoma/drug effects , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/therapeutic use , Trypanosomiasis, African/drug therapy , Drug Evaluation, Preclinical
3.
Trends Parasitol ; 39(4): 260-271, 2023 04.
Article in English | MEDLINE | ID: mdl-36803572

ABSTRACT

While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.


Subject(s)
Malaria , Parasitic Diseases , Humans , Drug Discovery , Parasitic Diseases/drug therapy , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Malaria/drug therapy , Technology
4.
Malar J ; 21(1): 393, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36564750

ABSTRACT

BACKGROUND: The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection. METHODS: Previously published RNA sequencing data were used to quantify the expression of host genes in rhesus macaque hepatocytes infected with P. cynomolgi in comparison to either cells from uninfected samples or uninfected bystander cells. RESULTS: Although the dataset could not be used to resolve the transcriptional profile of hypnozoite-infected hepatocytes, it provided a snapshot of the host response to liver stage schizonts at 9-10 day post-infection and identified specific host pathways that are modulated during the exo-erythrocytic stage of P. cynomolgi. CONCLUSIONS: This study constitutes a valuable resource characterizing the hepatocyte response to P. cynomolgi infection and provides a framework to build on future research that aims at understanding hepatocyte-parasite interactions during relapsing malaria infection.


Subject(s)
Malaria , Parasites , Plasmodium cynomolgi , Animals , Plasmodium cynomolgi/genetics , Macaca mulatta/parasitology , Hepatocytes/parasitology , Malaria/parasitology , Liver/parasitology
5.
J Med Chem ; 65(17): 11776-11787, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35993839

ABSTRACT

Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.


Subject(s)
Quinolines , Trypanosoma , Trypanosomiasis, African , Animals , Cryoelectron Microscopy , Disease Models, Animal , Humans , Mice , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
6.
J Med Chem ; 65(5): 3798-3813, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35229610

ABSTRACT

A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Folic Acid Antagonists/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Plasmodium falciparum
7.
ACS Infect Dis ; 7(5): 959-968, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33822577

ABSTRACT

Cryptosporidiosis is a leading cause of moderate-to-severe diarrhea in low- and middle-income countries, responsible for high mortality in children younger than two years of age, and it is also strongly associated with childhood malnutrition and growth stunting. There is no vaccine for cryptosporidiosis and existing therapeutic options are suboptimal to prevent morbidity and mortality in young children. Recently, novel therapeutic agents have been discovered through high-throughput phenotypic and target-based screening strategies, repurposing malaria hits, etc., and these agents have a promising preclinical in vitro and in vivo anti-Cryptosporidium efficacy. One key step in bringing safe and effective new therapies to young vulnerable children is the establishment of some prospect of direct benefit before initiating pediatric clinical studies. A Cryptosporidium controlled human infection model (CHIM) in healthy adult volunteers can be a robust clinical proof of concept model for evaluating novel therapeutics. CHIM could potentially accelerate the development path to pediatric studies by establishing the safety of a proposed pediatric dosing regimen and documenting preliminary efficacy in adults. We present, here, perspectives regarding the opportunities and perceived challenges with the Cryptosporidium human challenge model.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Malaria , Adult , Antiparasitic Agents/pharmacology , Child , Child, Preschool , Cryptosporidiosis/drug therapy , Diarrhea/drug therapy , Humans
8.
PLoS Negl Trop Dis ; 15(3): e0009057, 2021 03.
Article in English | MEDLINE | ID: mdl-33705395

ABSTRACT

Cryptosporidium is a widely distributed enteric parasite that has an increasingly appreciated pathogenic role, particularly in pediatric diarrhea. While cryptosporidiosis has likely affected humanity for millennia, its recent "emergence" is largely the result of discoveries made through major epidemiologic studies in the past decade. There is no vaccine, and the only approved medicine, nitazoxanide, has been shown to have efficacy limitations in several patient groups known to be at elevated risk of disease. In order to help frontline health workers, policymakers, and other stakeholders translate our current understanding of cryptosporidiosis into actionable guidance to address the disease, we sought to assess salient issues relating to clinical management of cryptosporidiosis drawing from a review of the literature and our own field-based practice. This exercise is meant to help inform health system strategies for improving access to current treatments, to highlight recent achievements and outstanding knowledge and clinical practice gaps, and to help guide research activities for new anti-Cryptosporidium therapies.


Subject(s)
Antiparasitic Agents/therapeutic use , Cryptosporidiosis/drug therapy , Cryptosporidiosis/epidemiology , Cryptosporidium/drug effects , Nitro Compounds/therapeutic use , Thiazoles/therapeutic use , Child, Preschool , Cryptosporidium/immunology , Diarrhea/parasitology , Disease Outbreaks , Fluid Therapy , Humans , Immunocompromised Host/immunology , Infant , Infant, Newborn
9.
Sci Transl Med ; 13(579)2021 02 03.
Article in English | MEDLINE | ID: mdl-33536278

ABSTRACT

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Subject(s)
Dengue Virus , Dengue , Animals , Antiviral Agents/therapeutic use , Dengue/drug therapy , Dogs , Mice , Models, Animal , Rats , Serogroup
10.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Article in English | MEDLINE | ID: mdl-32661312

ABSTRACT

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Subject(s)
Kinetochores/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma brucei brucei/drug effects , Animals , Biomarkers , Cell Cycle/drug effects , Cell Line , Disease Models, Animal , Gene Expression , Humans , Immunophenotyping , Kinetochores/chemistry , Mice , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protozoan Proteins/chemistry , Structure-Activity Relationship
11.
Trop Med Infect Dis ; 5(1)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079320

ABSTRACT

Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and 'easy to use' oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis.

12.
Commun Biol ; 3: 7, 2020.
Article in English | MEDLINE | ID: mdl-31909199

ABSTRACT

Plasmodium vivax malaria is characterized by repeated episodes of blood stage infection (relapses) resulting from activation of dormant stages in the liver, so-called hypnozoites. Transition of hypnozoites into developing schizonts has never been observed. A barrier for studying this has been the lack of a system in which to monitor growth of liver stages. Here, exploiting the unique strengths of the simian hypnozoite model P. cynomolgi, we have developed green-fluorescent (GFP) hypnozoites that turn on red-fluorescent (mCherry) upon activation. The transgenic parasites show full liver stage development, including merozoite release and red blood cell infection. We demonstrate that individual hypnozoites actually can activate and resume development after prolonged culture, providing the last missing evidence of the hypnozoite theory of relapse. The few events identified indicate that hypnozoite activation in vitro is infrequent. This system will further our understanding of the mechanisms of hypnozoite activation and may facilitate drug discovery approaches.


Subject(s)
Genes, Reporter , Malaria/parasitology , Plasmodium cynomolgi/physiology , Reinfection/parasitology , Green Fluorescent Proteins/genetics , Liver/parasitology , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/physiology , Plasmodium cynomolgi/genetics
13.
ACS Infect Dis ; 6(1): 14-24, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31612701

ABSTRACT

Diarrhea has long been recognized as an important cause of mortality during childhood. In parallel with ensuring access to proven care practices is the imperative to apply modern advances in medicine, science, and technology to accelerate progress against diarrheal disease, particularly in developing countries where the burden of avoidable harm is the greatest. In order to highlight achievements and identify outstanding areas of need, we reviewed the landscape of recent innovations that have significance for the study and clinical management of pediatric diarrhea in low resource settings.


Subject(s)
Developing Countries/statistics & numerical data , Diarrhea/epidemiology , Diarrhea/prevention & control , Health Resources/supply & distribution , Bacterial Infections/prevention & control , Child , Communicable Disease Control , Developing Countries/economics , Diarrhea/mortality , Health Resources/statistics & numerical data , Humans , Parasitic Diseases/prevention & control , Public Health/methods , Vaccines , Virus Diseases/prevention & control
14.
Nat Commun ; 10(1): 3635, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406175

ABSTRACT

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.


Subject(s)
Erythrocytes/parasitology , Macaca/parasitology , Malaria/veterinary , Monkey Diseases/parasitology , Plasmodium cynomolgi/growth & development , Animals , Anopheles/parasitology , Malaria/parasitology , Malaria/transmission
15.
Biomaterials ; 216: 119221, 2019 09.
Article in English | MEDLINE | ID: mdl-31195301

ABSTRACT

Hypnozoites are the liver stage non-dividing form of the malaria parasite that are responsible for relapse and acts as a natural reservoir for human malaria Plasmodium vivax and P. ovale as well as a phylogenetically related simian malaria P. cynomolgi. Our understanding of hypnozoite biology remains limited due to the technical challenge of requiring the use of primary hepatocytes and the lack of robust and predictive in vitro models. In this study, we developed a malaria liver stage model using 3D spheroid-cultured primary hepatocytes. The infection of primary hepatocytes in suspension led to increased infectivity of both P. cynomolgi and P. vivax infections. We demonstrated that this hepatic spheroid model was capable of maintaining long term viability, hepatocyte specific functions and cell polarity which enhanced permissiveness and thus, permitting for the complete development of both P. cynomolgi and P. vivax liver stage parasites in the infected spheroids. The model described here was able to capture the full liver stage cycle starting with sporozoites and ending in the release of hepatic merozoites capable of invading simian erythrocytes in vitro. Finally, we showed that this system can be used for compound screening to discriminate between causal prophylactic and cidal antimalarials activity in vitro for relapsing malaria.


Subject(s)
Antimalarials/pharmacology , Hepatocytes/parasitology , Malaria/drug therapy , Plasmodium/drug effects , Animals , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Hepatocytes/cytology , Humans , Liver/cytology , Liver/parasitology , Macaca fascicularis , Macaca mulatta , Parasitic Sensitivity Tests/methods , Recurrence , Secondary Prevention , Spheroids, Cellular/cytology , Spheroids, Cellular/parasitology , Sporozoites/drug effects
16.
ACS Infect Dis ; 5(2): 152-157, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30543391

ABSTRACT

Kinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality. Despite the gains, no new chemical or biological entities to treat kinetoplastid diseases have been registered in more than three decades, and more work is needed to discover safe and effective therapies for patients with Chagas disease and leishmaniasis. Advances in tools for drug discovery and novel insights into the biology of the host-parasite interaction may provide opportunities for accelerated progress. Here, we summarize the output from a gathering of scientists and physicians who met to discuss the current status and future directions in drug discovery for kinetoplastid diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Discovery/trends , Euglenozoa Infections/drug therapy , Kinetoplastida/drug effects , Animals , Chagas Disease/drug therapy , Host-Parasite Interactions , Humans , Immunomodulation , Leishmaniasis/drug therapy , Mice , Models, Animal
17.
Elife ; 72018 12 27.
Article in English | MEDLINE | ID: mdl-30589413

ABSTRACT

Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.


Subject(s)
Gene Expression Profiling , Liver/parasitology , Plasmodium cynomolgi/growth & development , Plasmodium cynomolgi/genetics , Animals , Primates , Time Factors
18.
Article in English | MEDLINE | ID: mdl-29530849

ABSTRACT

Artemisinin (ART) resistance has spread through Southeast Asia, posing a serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (here called dormant rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that have demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of the IPZ GNF179 and evaluated its activity against rings and dormant rings in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than against ring and trophozoite stages. However, with 12 h of exposure, the compound effectively kills rings and dormant rings of both susceptible and ART-resistant parasites within 72 h. We further demonstrate that in combination with ART, GNF179 effectively prevents recrudescence of dormant rings, including those bearing pfk13 propeller mutations.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Imidazoles/pharmacology , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schizonts/drug effects , Schizonts/metabolism , Trophozoites/drug effects , Trophozoites/metabolism
19.
ACS Infect Dis ; 4(4): 635-645, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29341586

ABSTRACT

Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.


Subject(s)
Antiprotozoal Agents/isolation & purification , Cryptosporidium parvum/drug effects , Cryptosporidium parvum/growth & development , Drug Evaluation, Preclinical/methods , Epithelial Cells/parasitology , Antiprotozoal Agents/pharmacology , Cell Line , Humans
20.
Nature ; 546(7658): 376-380, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28562588

ABSTRACT

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Cryptosporidiosis/drug therapy , Cryptosporidiosis/parasitology , Cryptosporidium/drug effects , Cryptosporidium/enzymology , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Animals, Newborn , Cattle , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunocompromised Host , Interferon-gamma/deficiency , Interferon-gamma/genetics , Male , Mice , Mice, Knockout , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...