Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
J Thromb Haemost ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38670315

BACKGROUND: Free labile hemin acts as a damage-associated molecular pattern during acute and chronic hemolysis and muscle injury, supporting platelet activation and thrombosis. OBJECTIVES: To investigate the anti-thrombotic potential of hydroxychloroquine on hemolysis-induced platelet activation and arterial thrombosis. METHODS: The effect of hydroxychloroquine on hemin-induced platelet activation and hemolysis-induced platelet recruitment and aggregation was measured in washed platelets and hemolyzed blood, respectively. Its effect on ferric-chloride (FeCl3)-induced arterial thrombosis and lung perfusion following hemin injection was assessed in wild-type mice. RESULTS: Erythrocyte lysis and endothelial cell activation cooperatively supported platelet aggregation and thrombosis at arterial shear stress. This thrombotic effect was reversed by hydroxychloroquine. In a purified system, hydroxychloroquine inhibited platelet build-up on immobilized von Willebrand factor in hemolyzed blood without altering initial platelet recruitment. Hydroxychloroquine inhibited hemin-induced platelet activation and phosphatidylserine exposure independently of reactive oxygen species generation. In the presence of hemin, hydroxychloroquine did not alter glycoprotein VI shedding but reduced C-type-lectin-like-2 expression on platelets. In vivo, hydroxychloroquine reversed pulmonary perfusion decline induced by exogenous administration of hemin. In arterial thrombosis models, hydroxychloroquine inhibited ferric-chloride-induced thrombosis in the carotid artery and reduced von Willebrand factor accumulation in the thrombi. CONCLUSION: Hydroxychloroquine inhibited hemolysis-induced arterial thrombosis ex vivo and improved pulmonary perfusion in hemin-treated mice, supporting a potential benefit of its use as an adjuvant therapy in hemolytic diseases to limit arterial thrombosis and to improve organ perfusion.

2.
EMBO Rep ; 25(4): 1962-1986, 2024 Apr.
Article En | MEDLINE | ID: mdl-38548973

Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.


Biomarkers, Tumor , Neoplasms , Mice , Humans , Animals , Biomarkers, Tumor/metabolism , Neoplasms/pathology , Apoptosis , Signal Transduction
3.
Front Immunol ; 14: 1266668, 2023.
Article En | MEDLINE | ID: mdl-38077343

An antibody molecule that can bind to multiple distinct antigens is defined as polyreactive. In the present study, we performed statistical analyses to assess sequence correlates of polyreactivity of >600 antibodies cloned from different B-cell types of healthy humans. The data revealed several sequence patterns of variable regions of heavy and light immunoglobulin chains that determine polyreactivity. The most prominent identified patterns were increased number of basic amino acid residues, reduced frequency of acidic residues, increased number of aromatic and hydrophobic residues, and longer length of CDR L1. Importantly, our study revealed that antibodies isolated from different B-cell populations used distinct sequence patterns (or combinations of them) for polyreactive antigen binding. Furthermore, we combined the data from sequence analyses with molecular modeling of selected polyreactive antibodies and demonstrated that human antibodies can use multiple pathways for achieving antigen-binding promiscuity. These data reconcile some contradictions in the literature regarding the determinants of antibody polyreactivity. Moreover, our study demonstrates that the mechanism of polyreactivity of antibodies evolves during immune response and might be tailored to specific functional properties of different B-cell compartments. Finally, these data can be of use for efforts in the development and engineering of therapeutic antibodies.


Antibodies , Immunoglobulin Variable Region , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/chemistry , B-Lymphocytes , Adaptive Immunity
4.
Nat Commun ; 14(1): 6326, 2023 10 10.
Article En | MEDLINE | ID: mdl-37816704

HIV-1 infection causes severe alterations of gut mucosa, microbiota and immune system, which can be curbed by early antiretroviral therapy. Here, we investigate how treatment timing affects intestinal memory B-cell and plasmablast repertoires of HIV-1-infected humans. We show that only class-switched memory B cells markedly differ between subjects treated during the acute and chronic phases of infection. Intestinal memory B-cell monoclonal antibodies show more prevalent polyreactive and commensal bacteria-reactive clones in late- compared to early-treated individuals. Mirroring this, serum IgA polyreactivity and commensal-reactivity are strongly increased in late-treated individuals and correlate with intestinal permeability and systemic inflammatory markers. Polyreactive blood IgA memory B cells, many of which egressed from the gut, are also substantially enriched in late-treated individuals. Our data establish gut and systemic B-cell polyreactivity to commensal bacteria as hallmarks of chronic HIV-1 infection and suggest that initiating treatment early may limit intestinal B-cell abnormalities compromising HIV-1 humoral response.


HIV Infections , HIV-1 , Humans , Memory B Cells , B-Lymphocytes , Bacteria , HIV Infections/drug therapy , Immunoglobulin A , Intestinal Mucosa/microbiology
6.
J Thromb Haemost ; 21(10): 2776-2783, 2023 10.
Article En | MEDLINE | ID: mdl-37473843

BACKGROUND: Emicizumab is a bispecific, chimeric, humanized immunoglobulin G (IgG)4 that mimics the procoagulant activity of factor (F) VIII (FVIII). Its long half-life and subcutaneous route of administration have been life-changing in treating patients with hemophilia A (HA) with or without FVIII inhibitors. However, emicizumab only partially mimics FVIII activity; it prevents but does not treat acute bleeds. Emergency management is particularly complicated in patients with FVIII inhibitors receiving emicizumab prophylaxis in whom exogenous FVIII is inefficient. We have shown recently that Imlifidase (IdeS), a bacterial IgG-degrading enzyme, efficiently eliminates human anti-FVIII IgG in a mouse model of severe HA with inhibitors and opens a therapeutic window for the administration of exogenous FVIII. OBJECTIVES: To investigate the impact of IdeS treatment in inhibitor-positive HA mice injected with emicizumab. METHODS: IdeS was injected to HA mice reconstituted with human neutralizing anti-FVIII IgG and treated with emicizumab. RESULTS: IdeS hydrolyzed emicizumab in vitro and in vivo, albeit, at slower rates than another recombinant human monoclonal IgG4. While F(ab')2 fragments were rapidly cleared from the circulation, thus leading to a rapid loss of emicizumab procoagulant activity, low amounts of single-cleaved intermediate IgG persisted for several days. Moreover, the IdeS-mediated elimination of the neutralizing anti-FVIII IgG and restoration of the hemostatic efficacy of exogenous FVIII were not impaired by the presence of emicizumab and polyclonal human IgG in inhibitor-positive HA mice. CONCLUSION: Our results suggest that IdeS could be administered to inhibitor-positive patients with HA receiving emicizumab prophylaxis to improve and ease the management of breakthrough bleeds or programmed major surgeries.


Antibodies, Bispecific , Hemophilia A , Humans , Animals , Mice , Hemophilia A/drug therapy , Factor VIII/therapeutic use , Antibodies, Bispecific/therapeutic use , Hemorrhage/drug therapy , Immunosuppressive Agents/therapeutic use , Immunoglobulin G
7.
Cell Host Microbe ; 31(8): 1275-1287.e8, 2023 08 09.
Article En | MEDLINE | ID: mdl-37433296

HIV-1 broadly neutralizing antibodies (bNAbs) can decrease viremia but are usually unable to counteract autologous viruses escaping the antibody pressure. Nonetheless, bNAbs may contribute to natural HIV-1 control in individuals off antiretroviral therapy (ART). Here, we describe a bNAb B cell lineage elicited in a post-treatment controller (PTC) that exhibits broad seroneutralization and show that a representative antibody from this lineage, EPTC112, targets a quaternary epitope in the glycan-V3 loop supersite of the HIV-1 envelope glycoprotein. The cryo-EM structure of EPTC112 complexed with soluble BG505 SOSIP.664 envelope trimers revealed interactions with N301- and N156-branched N-glycans and the 324GDIR327 V3 loop motif. Although the sole contemporaneous virus circulating in this PTC was resistant to EPTC112, it was potently neutralized by autologous plasma IgG antibodies. Our findings illuminate how cross-neutralizing antibodies can alter the HIV-1 infection course in PTCs and may control viremia off-ART, supporting their role in functional HIV-1 cure strategies.


HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing , Viremia , HIV Infections/drug therapy , Antigens, Viral , Polysaccharides , env Gene Products, Human Immunodeficiency Virus
8.
Arterioscler Thromb Vasc Biol ; 43(8): 1349-1361, 2023 08.
Article En | MEDLINE | ID: mdl-37317847

Independent of etiology, hemolytic diseases are associated with thrombosis, inflammation and immune dysregulation, all together contributing to organ damage and poor outcome. Beyond anemia and the loss of the anti-inflammatory functions of red blood cells, hemolysis leads to the release of damage-associated molecular patterns including ADP, hemoglobin, and heme, which act through multiple receptors and signaling pathways fostering a hyperinflammatory and hypercoagulable state. Extracellular free heme is promiscuous alarmin capable of triggering oxido-inflammatory and thrombotic events by inducing the activation of platelets, endothelial and innate cells as well as the coagulation and complement cascades. In this review, we discuss the main mechanisms by which hemolysis and, in particular, heme, drive this thrombo-inflammatory milieu and discuss the consequences of hemolysis on the host response to secondary infections.


Hemoglobins , Hemolysis , Humans , Hemoglobins/metabolism , Erythrocytes/metabolism , Heme , Inflammation/metabolism
9.
J Thromb Haemost ; 21(9): 2405-2417, 2023 09.
Article En | MEDLINE | ID: mdl-37271431

BACKGROUND: Transplacental delivery of maternal immunoglobulin G (IgG) provides humoral protection during the first months of life until the newborn's immune system reaches maturity. The maternofetal interface has been exploited therapeutically to replace missing enzymes in the fetus, as shown in experimental mucopolysaccharidoses, or to shape adaptive immune repertoires during fetal development and induce tolerance to self-antigens or immunogenic therapeutic molecules. OBJECTIVES: To investigate whether proteins that are administered to pregnant mice or endogenously present in their circulation may be delivered through the placenta. METHODS: We engineered monovalent immunoglobulin G (FabFc) specific for different domains of human factor VIII (FVIII), a therapeutically relevant model antigen. FabFc was injected with exogenous FVIII into pregnant severe hemophilia A mice or pregnant mice expressing human FVIII following AAV8-mediated gene therapy. FabFc and FVIII were detected in the pregnant mice and/or fetuses by enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS: Administration of FabFc to pregnant mice allowed the maternofetal delivery of FVIII in a FcRn-dependent manner. FVIII antigen levels achieved in the fetuses represented 10% of normal plasma levels in the human. We identified antigen/FabFc complex stability, antigen size, and shielding of promiscuous protein patches as key parameters to foster optimal antigen delivery. CONCLUSION: Our results pave the way toward the development of novel strategies for the in utero delivery of endogenous maternal proteins to replace genetically deficient fetal proteins or to educate the immune system and favor active immune tolerance upon protein encounter later in life.


Hemophilia A , Immunoglobulin G , Pregnancy , Female , Mice , Humans , Animals , Factor VIII , Hemophilia A/genetics , Hemophilia A/therapy , Placenta , Genetic Therapy , Immune Tolerance
10.
Commun Biol ; 6(1): 168, 2023 02 11.
Article En | MEDLINE | ID: mdl-36774392

Intravascular hemolysis occurs in diverse pathological conditions. Extracellular hemoglobin and heme have strong pro-oxidative and pro-inflammatory potentials that can contribute to the pathology of hemolytic diseases. However, many of the effects of extracellular hemoglobin and heme in hemolytic diseases are still not well understood. Here we demonstrate that oxidized hemoglobin (methemoglobin) can modify the antigen-binding characteristics of human immunoglobulins. Thus, incubation of polyclonal or some monoclonal human IgG in the presence of methemoglobin results in an appearance of binding reactivities towards distinct unrelated self-proteins, including the protein constituent of hemoglobin i.e., globin. We demonstrate that a transfer of heme from methemoglobin to IgG is indispensable for this acquisition of antibody polyreactivity. Our data also show that only oxidized form of hemoglobin have the capacity to induce polyreactivity of antibodies. Site-directed mutagenesis of a heme-sensitive human monoclonal IgG1 reveals details about the mechanism of methemoglobin-induced antigen-binding polyreactivity. Further here we assess the kinetics and thermodynamics of interaction of a heme-induced polyreactive human antibody with hemoglobin and myoglobin. Taken together presented data contribute to a better understanding of the functions of extracellular hemoglobin in the context of hemolytic diseases.


Heme , Methemoglobin , Humans , Heme/metabolism , Methemoglobin/metabolism , Hemoglobins/metabolism , Immunoglobulin G , Antibodies, Monoclonal , Hemolysis
11.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article En | MEDLINE | ID: mdl-36834827

The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.


Heme , Immunoglobulin G , Infant, Newborn , Humans , Heme/metabolism , Oxidation-Reduction , Adaptive Immunity , Iron
12.
Haematologica ; 108(5): 1322-1334, 2023 05 01.
Article En | MEDLINE | ID: mdl-36655430

Neutralizing anti-factor VIII (FVIII) antibodies, known as FVIII inhibitors, represent a major drawback of replacement therapy in persons with congenital hemophilia A (PwHA), rendering further infusions of FVIII ineffective. FVIII inhibitors can also appear in non-hemophilic individuals causing acquired hemophilia A (AHA). The use of non-FVIII bypassing agents in cases of bleeds or surgery in inhibitor-positive patients is complicated by the lack of reliable biological monitoring and increased thrombotic risk. Imlifidase (IdeS) is an endopeptidase that degrades human immunoglobulin G (IgG); it was recently approved for hyperimmune patients undergoing renal transplants. Here we investigated the ability of IdeS to eliminate FVIII inhibitors in vitro and in a model of inhibitor-positive HA mice. IdeS cleaved anti-FVIII plasma IgG from PwHA and AHA patients, and hydrolyzed recombinant human anti-FVIII IgG independently from their subclass or specificity for the A2, A3, C1 or C2 domains of FVIII. In HA mice passively immunized with recombinant human anti-FVIII IgG, IdeS restored the hemostatic efficacy of FVIII, as evidenced by the correction of the bleeding tendency. Our results provide the proof of concept for the transient removal of FVIII inhibitors by IdeS, thereby opening a therapeutic window for efficient FVIII replacement therapy in inhibitor-positive patients.


Hemophilia A , Hemostatics , Humans , Mice , Animals , Hemophilia A/drug therapy , Hemorrhage , Immunoglobulin G , Immunosuppressive Agents/therapeutic use
13.
Dev Comp Immunol ; 139: 104579, 2023 02.
Article En | MEDLINE | ID: mdl-36272453

Recently, numerous studies report bats as reservoirs of emerging pathogens with little to no signs of infections. This is thought to be connected to the unique immune system of bats, which remains poorly characterized. Despite the physiological importance of the Neonatal Fc receptor (FcRn) in the homeostasis of IgG antibodies, it is unclear how its functional activity is evolutionary conservative among mammals, and so is the case for bats. Using surface plasmon resonance-based technology, we tested the interactions of IgG antibodies isolated from three bat species with recombinant human and mouse FcRn. Our data show that IgG from the studied bat species binds to both human and mouse FcRn, albeit with distinct affinities. Importantly, the binding pattern of bat IgG is similar to human IgG. This confirms the conservative nature of IgG-FcRn interaction and highlights the importance of FcRn IgG salvaging system in bats.


Immunoglobulin G , Mammals , Humans , Mice , Animals
15.
Biol Chem ; 403(11-12): 1083-1090, 2022 11 25.
Article En | MEDLINE | ID: mdl-36254402

Heme regulates important biological processes by transient interactions with many human proteins. The goal of the present study was to assess extends of protein binding promiscuity of heme. To this end we evaluated interaction of heme with >9000 human proteins. Heme manifested high binding promiscuity by binding to most of the proteins in the array. Nevertheless, some proteins have outstanding heme binding capacity. Bioinformatics analyses revealed that apart from typical haemoproteins, these proteins are frequently involved in metal binding or have the potential to recognize DNA. This study can contribute for understanding the regulatory functions of labile heme.


Heme , Humans , Heme/metabolism , Protein Binding
16.
Protein Sci ; 31(11): e4447, 2022 11.
Article En | MEDLINE | ID: mdl-36305765

SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding
17.
Front Immunol ; 13: 901876, 2022.
Article En | MEDLINE | ID: mdl-35935964

Hemolysis, as a result of disease or exposure to biomaterials, is characterized by excess amounts of cell-free heme intravascularly and consumption of the protective heme-scavenger proteins in plasma. The liberation of heme has been linked to the activation of inflammatory systems, including the complement system, through alternative pathway activation. Here, we investigated the impact of heme on the regulatory function of the complement system. Heme dose-dependently inhibited factor I-mediated degradation of soluble and surface-bound C3b, when incubated in plasma or buffer with complement regulatory proteins. Inhibition occurred with factor H and soluble complement receptor 1 as co-factors, and the mechanism was linked to the direct heme-interaction with factor I. The heme-scavenger protein hemopexin was the main contaminant in purified factor I preparations. This led us to identify that hemopexin formed a complex with factor I in normal human plasma. These complexes were significantly reduced during acute vasoocclusive pain crisis in patients with sickle cell disease, but the complexes were normalized at their baseline outpatient clinic visit. Hemopexin exposed a protective function of factor I activity in vitro, but only when it was present before the addition of heme. In conclusion, we present a mechanistic explanation of how heme promotes uncontrolled complement alternative pathway amplification by interfering with the regulatory capacity of factor I. Reduced levels of hemopexin and hemopexin-factor I complexes during an acute hemolytic crisis is a risk factor for heme-mediated factor I inhibition.


Anemia, Sickle Cell , Hemopexin , Anemia, Sickle Cell/metabolism , Complement Factor I , Fibrinogen , Heme/metabolism , Hemopexin/pharmacology , Humans
18.
J Exp Med ; 219(7)2022 07 04.
Article En | MEDLINE | ID: mdl-35704748

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunoglobulin A , Immunoglobulin G , Spike Glycoprotein, Coronavirus
19.
Immunobiology ; 227(3): 152213, 2022 05.
Article En | MEDLINE | ID: mdl-35429697

Previous studies have shown that polyreactive antibodies play an important role in the frontline defense against the dissemination of pathogens in the pre-immune host. Interestingly, antigen-binding polyreactivity can not only be inherent, but also acquired post-translationally. The ability of individual monoclonal IgG and IgE antibodies to acquire polyreactivity following contact with various agents that destabilize protein structure (urea, low pH) or have a pro-oxidative potential (heme, ferrous ions) has been studied in detail. However, to the best of our knowledge this property of human IgA has previously been described only cursorily. In the present study pooled human serum IgA and two human monoclonal IgA antibodies were exposed to buffers with acidic pH, to free heme or to ferrous ions, and the antigen-binding behavior of the native and modified IgA to viral and bacterial antigens were compared using immunoblot and ELISA. We observed a dose-dependent increase in reactivity to several bacterial extracts and to pure viral antigens. This newly described property of IgA may have therapeutic potential as has already been shown for pooled IgG with induced polyreactivity.


Antibodies, Monoclonal , Immunoglobulin G , Antibody Specificity , Heme , Humans , Immunoglobulin A , Ions
20.
J Exp Med ; 219(3)2022 03 07.
Article En | MEDLINE | ID: mdl-35230385

Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice. bNAbs in all three lineages targeted the N332 glycan supersite. The 2.8-Å resolution cryo-EM structure of 7-269-BG505 SOSIP.664 complex showed a similar pose as 2G12, on an epitope mainly composed of sugar residues comprising the N332 and N295 glycans. Binding and cryo-EM structural analyses showed that antibodies from the two other lineages interact mostly with glycans N332 and N386. Hence, multiple B cell lineages of IgG and IgA bNAbs focused on a unique HIV-1 site of vulnerability can codevelop in HIV-1 viremic controllers.


HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Elite Controllers , Epitopes , HIV Antibodies , Humans , Immunoglobulin A , Immunoglobulin G , Mice , Polysaccharides , env Gene Products, Human Immunodeficiency Virus
...