Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Environ Sci Technol ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360895

ABSTRACT

Chromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved. In contrast, EOC (38 ± 1%), microbes (33 ± 1%), and exchangeable and poorly crystalline Fe (oxyhr)oxide-associated Fe(II) (29 ± 3%) contribute to Cr(VI) reduction in paddy soils enriched with ferrihydrite. Additionally, exogenous Fe(II) and microbes significantly enhance Cr(VI) reduction in ferrihydrite- and goethite-rich soils, and Fe(II) greatly promotes but microbes slightly inhibit Cr passivation. Both Fe(II) and microbes, especially the latter, promote OM mineralization and result in the most substantial OM loss in ferrihydrite-rich paddy soils. During the incubation, part of the ferrihydrite converts to goethite but microbes may hinder the transformation. These results provide deep insights into the geochemical fates of redox-sensitive heavy metals mediated by the complicated effects of Fe, OM, and microbes in natural and engineered environments.

2.
Elife ; 132024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311685

ABSTRACT

The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the context of decision-making based on uncertain evidence. Guided by theoretical predictions of specific STN contributions, we used single-unit recording and electrical microstimulation in the STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct task-related activity patterns that related to different theoretically predicted functions. Microstimulation caused changes in behavioral choices and response times that reflected multiple contributions to an 'accumulate-to-bound'-like decision process, including modulation of decision bounds and evidence accumulation, and to non-perceptual processes. These results provide new insights into the multiple ways that the STN can support higher brain function.


Subject(s)
Decision Making , Macaca mulatta , Subthalamic Nucleus , Animals , Subthalamic Nucleus/physiology , Decision Making/physiology , Neurons/physiology , Male , Electric Stimulation , Saccades/physiology
3.
J Agric Food Chem ; 72(35): 19378-19394, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39166383

ABSTRACT

This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1ß, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease , Peptides , Zea mays , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Mice , Gastrointestinal Microbiome/drug effects , Inflammasomes/metabolism , Inflammasomes/genetics , Male , Humans , Zea mays/chemistry , Peptides/pharmacology , Peptides/administration & dosage , Liver/metabolism , Liver/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Hep G2 Cells , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-1beta/metabolism
4.
J Hazard Mater ; 476: 135133, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38986408

ABSTRACT

Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.


Subject(s)
Ecosystem , Oligochaeta , Soil Microbiology , Virulence Factors , Oligochaeta/microbiology , Animals , Virulence Factors/genetics , Microbiota , Bacteria/genetics , Bacteria/metabolism , Bacteria/pathogenicity
5.
Foods ; 13(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063327

ABSTRACT

The objective of this study was to investigate the umami characteristics of soy sauce using electronic tongue evaluation and amino acid composition and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. The soy sauce peptides were isolated from soy sauce using XAD-16 macroporous resin combined with ethanol solution. The results showed that the soy sauce peptide fraction eluted by 60% ethanol (SS-60%) exhibited a prominent umami taste, and the umami scores were highly positively correlated with the amino acid nitrogen contents of soy sauces. The umami scores of SS-60% were significantly positively correlated with the contents of free amino acids. Especially, Phe showed the highest positive correlation with the umami scores. In addition, five characteristic ion peaks with m/z at 499, 561, 643, 649, and 855 were identified in the peptide mass fingerprinting. Therefore, this study provides new insights into the umami characteristics for the taste evaluation and reality identification of soy sauce.

6.
Environ Sci Technol ; 58(25): 11027-11040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857061

ABSTRACT

Conversion from natural lands to cropland, primarily driven by agricultural expansion, could significantly alter soil microbiome worldwide; however, influences of forest-to-cropland conversion on microbial hierarchical interactions and ecosystem multifunctionality have not been fully understood. Here, we examined the effects of forest-to-cropland conversion on intratrophic and cross-trophic microbial interactions and soil ecosystem multifunctionality and further disclosed their underlying drivers at a national scale, using Illumina sequencing combined with high-throughput quantitative PCR techniques. The forest-to-cropland conversion significantly changed the structure of soil microbiome (including prokaryotic, fungal, and protistan communities) while it did not affect its alpha diversity. Both intrakingdom and interkingdom microbial networks revealed that the intratrophic and cross-trophic microbial interaction patterns generally tended to be more modular to resist environmental disturbance introduced from forest-to-cropland conversion, but this was insufficient for the cross-trophic interactions to maintain stability; hence, the protistan predation behaviors were still disturbed under such conversion. Moreover, key soil microbial clusters were declined during the forest-to-cropland conversion mainly because of the increased soil total phosphorus level, and this drove a great degradation of the ecosystem multifunctionality (by 207%) in cropland soils. Overall, these findings comprehensively implied the negative effects of forest-to-cropland conversion on the agroecosystem, from microbial hierarchical interactions to ecosystem multifunctionality.


Subject(s)
Ecosystem , Forests , Soil Microbiology , Microbiota , Agriculture , Soil , Crops, Agricultural
7.
Food Chem X ; 22: 101441, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756471

ABSTRACT

This study aimed to investigate the effects of germination and roasting on the flavor of quinoa. Firstly, the aroma of quinoa and germinated quinoa roasted under different conditions was analyzed using sensory evaluation and electronic nose (E-nose). Results showed that the best favorable aroma of quinoa and germinated quinoa was obtained when roasted at 160 °C for 15 min. Then, a total of 34 and 80 volatile organic compounds (VOCs) of quinoa and germinated quinoa roasted at 160 °C for 15 min were determined using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Germination and roasting effectively reduced the contents of VOCs that produced undesirable flavor. Moreover, germination improved the floral aromas, while roasting mainly produced caramel, cocoa, and roasted nut aromas of quinoa. This study indicated that germination and roasting treatments might serve as promising processing methods to improve the flavor of quinoa.

8.
Sci Total Environ ; 928: 172542, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636860

ABSTRACT

Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.


Subject(s)
Drug Resistance, Microbial , Dust , Metagenomics , Seasons , Virulence Factors , Dust/analysis , Virulence Factors/genetics , Drug Resistance, Microbial/genetics , Beijing , Environmental Monitoring , Bacteria/genetics , Microbiota/drug effects , Microbiota/genetics , Genes, Bacterial , Drug Resistance, Bacterial/genetics
9.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38645039

ABSTRACT

The subthalamic nucleus (STN) plays critical roles in the motor and cognitive function of the basal ganglia (BG), but the exact nature of these roles is not fully understood, especially in the context of decision-making based on uncertain evidence. Guided by theoretical predictions of specific STN contributions, we used single-unit recording and electrical microstimulation in the STN of healthy monkeys to assess its causal, computational roles in visual-saccadic decisions based on noisy evidence. The recordings identified subpopulations of STN neurons with distinct task-related activity patterns that related to different theoretically predicted functions. Microstimulation caused changes in behavioral choices and response times that reflected multiple contributions to an "accumulate-to-bound"-like decision process, including modulation of decision bounds and evidence accumulation, and to non-perceptual processes. These results provide new insights into the multiple ways that the STN can support higher brain function.

10.
Environ Sci Technol ; 58(13): 5866-5877, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38504110

ABSTRACT

Soil microbes, the main driving force of terrestrial biogeochemical cycles, facilitate soil organic matter turnover. However, the influence of the soil fauna on microbial communities remains poorly understood. We investigated soil microbiota dynamics by introducing competition and predation among fauna into two soil ecosystems with different fertilization histories. The interactions significantly affected rare microbial communities including bacteria and fungi. Predation enhanced the abundance of C/N cycle-related genes. Rare microbial communities are important drivers of soil functional gene enrichment. Key rare microbial taxa, including SM1A02, Gammaproteobacteria, and HSB_OF53-F07, were identified. Metabolomics analysis suggested that increased functional gene abundance may be due to specific microbial metabolic activity mediated by soil fauna interactions. Predation had a stronger effect on rare microbes, functional genes, and microbial metabolism compared to competition. Long-term organic fertilizer application increased the soil resistance to animal interactions. These findings provide a comprehensive understanding of microbial community dynamics under soil biological interactions, emphasizing the roles of competition and predation among soil fauna in terrestrial ecosystems.


Subject(s)
Microbiota , Soil , Soil Microbiology , Bacteria/genetics , Fungi/genetics , Fungi/metabolism
12.
J Hazard Mater ; 466: 133567, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38271874

ABSTRACT

Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.


Subject(s)
Arsenic , Environmental Pollutants , Microbiota , Soil Pollutants , Cadmium/metabolism , Arsenic/toxicity , Arsenic/analysis , Soil , Multiomics , Microbiota/genetics , Environmental Pollutants/analysis , Crops, Agricultural/metabolism , Polymerase Chain Reaction , Soil Pollutants/metabolism
13.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37963761

ABSTRACT

Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence for perceptual decisions (i.e., "did I get it right?") or reward expectation for reward-based decisions (i.e., "what reward will I receive?"). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on subsequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two evaluative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subsequent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse evaluative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and caudate nucleus play in a diversity of decision-related computations.


Subject(s)
Caudate Nucleus , Motivation , Male , Female , Animals , Caudate Nucleus/physiology , Decision Making/physiology , Frontal Lobe/physiology , Reward
14.
J Hazard Mater ; 465: 133319, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38159517

ABSTRACT

The growing accumulation of plastic waste in the environment has created novel habitats known as the "plastisphere", where microorganisms can thrive. Concerns are rising about the potential for pathogenic microorganisms to proliferate in the plastisphere, posing risks to human health. However, our knowledge regarding the virulence and pathogenic potential of these microorganisms in the plastisphere remains limited. This study quantified the abundance of virulence factor genes (VFGs) in the plastisphere and its surrounding environments (water and soil) to better assess pathogenic risks. Our findings revealed a selective enrichment of VFGs in the plastisphere, which were attributed to the specific microbial community assembled. The presence of arsenic and ciprofloxacin in the plastisphere exerted additional co-selective pressures, intensifying the enrichment of VFGs. Notably, VFGs that encoded multiple functions or enhanced the survival of host microorganisms (e.g., encoding adherence functions) tended to accumulate in the plastisphere. These versatile and environmentally adaptable VFGs are more likely to be favored by bacteria in the environment, warranting increased attention in future investigations due to their potential for widespread dissemination. In terms of virulence and pathogenicity, this research offers new insights into evaluating pathogen-related risks in the plastisphere.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Humans , Virulence Factors , Ciprofloxacin , Virulence , Plastics
15.
Zhongguo Gu Shang ; 36(10): 932-5, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37881924

ABSTRACT

OBJECTIVE: To study the corretation between the cross-sectional area of hamstring tenden measured by MRI and gragt in anterior cruciate ligament rexonstruction. METHODS: MRI data of 50 patients who planned to undergo anterior cruciate ligament reconstruction from November 2021 to March 2022 were collected, including 32 males and 18 females, aged from 19 to 48 years old with an average of(31.1±8.7) years. Before the operation, the semitendinosus and gracilis tendons were measured and recorded by MRI, and then the anterior cruciate ligament was reconstructed under arthroscope. During the operation, gracilis and semitendinosus tendons were taken to prepare the final tendon to be transplanted, and the diameter of the prepared final graft was measured during the operation. Finally, the data were analyzed by statistical software. RESULTS: The cross sectional areas of semitendinosus tendon, gracilis tendon, semitendinosus tendon and gracilis tendon measured by MRI were significantly and positively correlated with the diameter of grafts required in anterior cruciate ligament surgery, the r values were 0.858, 0.728, 0.842(P<0.001), respectively. The area under curre (AUC), sensitivity, and specificity of the sum of the cross sectional areas of semitendinosus tendon and gracilis tendon were 0.925, 90.48%, and 85.71%, respectively. CONCLUSION: In patients undergoing anterior cruciate ligament reconstruction, preoperative MRI measurement has a strong statistical correlation with the diameter of hamstring muscle transplantation during operation. The sum of the cross sectional areas of semitendinosus tendon and gracilis tendon has a high predictive value for the diameter of grafts during anterior cruciate ligament reconstruction, and can predict the size of grafts during operation.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Tendons , Male , Female , Humans , Young Adult , Adult , Middle Aged , Hamstring Tendons/surgery , Hamstring Tendons/transplantation , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament/surgery , Magnetic Resonance Imaging
16.
Food Res Int ; 173(Pt 2): 113480, 2023 11.
Article in English | MEDLINE | ID: mdl-37803802

ABSTRACT

This paper aimed to investigate the in vivo absorption of egg white hydrolysate (EWH) in rats and the transport route across the intestinal epithelium. Results showed that the level of plasma peptide-bound amino acid (PAA) of the EWH-supplemented rats (EWH-R) was determined to be 2012.18 ± 300.98 µmol/L, 10.72% higher than that of the control group, and was significantly positively correlated to that of EWH. Thirty-three egg white-derived peptides were successfully identified from the plasma of EWH-R, and 20 of them were found in both EWH-R plasma and EWH, indicating that these peptides tend to be absorbed through the intestinal epithelium in intact forms into the blood circulation. In addition, 637 up-regulated and 577 down-regulated genes in Caco-2 cells incubated with EWH were detected by RNA-sequencing and the clathrin-dependent endocytosis was the most enriched pathway in KEGG analysis. EWH significantly increased the mRNA levels of the key genes involved in the clathrin-dependent endocytosis but these changes would be inhibited by the clathrin-dependent endocytosis inhibitor of chlorpromazine. Moreover, the transepithelial transport of EWH across Caco-2 cell monolayers was significantly reduced by chlorpromazine. This study provided molecular-level evidence for the first time that clathrin-dependent endocytosis might be the main transport route of EWH in the intestinal epithelium.


Subject(s)
Chlorpromazine , Egg White , Humans , Rats , Animals , Caco-2 Cells , Egg White/chemistry , Chlorpromazine/pharmacology , Intestinal Mucosa , Peptides , Endocytosis , Clathrin
17.
Int J Biol Macromol ; 253(Pt 8): 127588, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37875182

ABSTRACT

The objective of this study was to investigate the protective effects of quinoa protein (QPro) and its derived peptides (QPep) in dextran sulfate sodium (DSS)-induced colitis in mice. The results demonstrated that oral administration of QPro and QPep significantly alleviated colitis symptoms, including diarrhea, abdominal pain, bloody stools, weight loss, as well as reduced colonic shortening, inflammatory factor release, and intestinal barrier injury. Short-chain fatty acids (SCFAs) production rose as QPro and QPep modulated the composition of the intestinal microbiota. Western blotting results revealed that QPro and QPep also suppressed TLR4 levels and inhibited IκB-α and NF-κB phosphorylation in colon tissue, implying that the TLR4/IκB-α/NF-κB signaling pathway may be involved in the amelioration of QPro and QPep in DSS-induced colitis. These results indicate the potential of quinoa protein and its hydrolysate to serve as bioactive components in functional diets for intestinal health and to significantly lower intestinal inflammation.


Subject(s)
Chenopodium quinoa , Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal , Colitis, Ulcerative/metabolism
18.
Annu Rev Vis Sci ; 9: 385-407, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37713277

ABSTRACT

The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.


Subject(s)
Basal Ganglia , Gap Junctions , Uncertainty
19.
Mol Nutr Food Res ; 67(22): e2300258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37759395

ABSTRACT

SCOPE: The obesity epidemic continues to be a major global public health threat with limited effective treatments. Peptides are a group of promising bioactive molecules. Both in vivo and in vitro studies have demonstrated that quinoa has potential prebiotic benefits. Thus, the present study aims to investigate the influence of quinoa peptides (QP) consumption on obesity and its underlying mechanisms in high-fat diet (HFD)-induced mice. METHODS AND RESULTS: QP (1000 mg kg-1  day-1 ) is administered to HFD mice for 8 weeks, and is found to significantly reduce the body weight, and plasma levels of triacylglycerol (TG) and total cholesterol (TC) compare to the HFD group. In addition, QP significantly decreases lipid accumulation in the liver caused by HFD. The liver transcriptome analysis shows that the alleviation of QP on obesity is related to the PPAR signaling pathway. QP upregulates the expressions of PPAR-α and its related genes and downregulates the expressions of PPAR-γ and its downstream genes. Furthermore, QP remodels the community composition of gut microbiota by lowering the ratio of Firmicutes c Bacteroidetes (F/B). CONCLUSION: These findings suggest that QP consumption alleviates HFD-induced obesity by regulating the PPAR-α/γ signaling pathway in the liver and community structure of gut microbiota.


Subject(s)
Chenopodium quinoa , Gastrointestinal Microbiome , Animals , Mice , Peroxisome Proliferator-Activated Receptors , Diet, High-Fat/adverse effects , Obesity/drug therapy , Obesity/etiology , Peptides/pharmacology , Signal Transduction , Mice, Inbred C57BL
20.
Int J Biol Macromol ; 238: 124202, 2023 May 31.
Article in English | MEDLINE | ID: mdl-36966857

ABSTRACT

This study aimed to investigate the effects of ultrasound pretreatment on the yield and the physicochemical properties, structural and digestion characterizations of quinoa protein (QP). Results showed that under the conditions of ultrasonic power density of 0.64 W/mL, ultrasonication time of 33 min, and the liquid-solid ratio of 24 mL/g, the highest yield of QP at 68.403 % was obtained, which was significantly higher than that without ultrasound pretreatment at 51.26 ± 1.76 % (P < 0.05). Ultrasound pretreatment decreased the average particle size and ζ-potential but increased the hydrophobicity of QP (P < 0.05). However, no significant protein degradation and secondary structure changes of QP by ultrasound pretreatment were observed. In addition, ultrasound pretreatment slightly improved the in vitro digestibility of QP and reduced the dipeptidyl peptidase IV (DPP-IV) inhibitory activity of the hydrolysate of QP by in vitro digestion. Overall, this work demonstrates that ultrasound-assisted extraction is appropriate for improving the extraction efficiency of QP.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/chemistry , Proteins , Proteolysis , Hydrophobic and Hydrophilic Interactions , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL