Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1733: 465253, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39146866

ABSTRACT

Wild animals, as a vital component of our natural world, serve a crucial role in preserving ecological equilibrium and biodiversity. By delving into the genetic constitution of wild animal populations, the evolutionary history, genetic diversity, and adaptation mechanisms could be explored, thereby informing conservation strategies and safeguarding the future of these species. In order to study the genetic information of wild animals, it is necessary to extract high purity and high concentration of wild animal genomic DNA. In this work, a hydrophobic magnetic deep eutectic solvent (HMDES) based vortexed extraction was developed for the extraction of genomic DNA from leopard cat (Prionailurus bengalensis), hairy-crowned deer (Elaphodus cephalophus) and muntjac (Muntiacus reevesi) muscle tissue, respectively. Extraction conditions like the pH value, extraction time, temperature and the amount of HMDES used were optimized by single-factor experiments. Under the optimized condition, genomic DNA could be selectively extracted from the three animal tissues. The limits of detection (LOD) and limits of quantification (LOQ) of the proposed method were 2.86 ng/µL and 8.66 ng/µL, respectively. Meanwhile, the relative standard deviation (RSD) of the method precision and repeatability were 1.64 % and 5.57 % at 20 ng/µL, showing the method has good precision and repeatability. After extraction, the DNA extracted into the HMDES droplets can be quickly recovered and the HMDES can be recycled and reused. The method proposed is a fast, environmental-friendly and high efficient extraction strategy for purification and enrichment of genomic DNA from leopard cat, hairy-crowned deer and muntjac tissues.

2.
Exp Biol Med (Maywood) ; 249: 10185, 2024.
Article in English | MEDLINE | ID: mdl-38978540

ABSTRACT

Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.


Subject(s)
Atherosclerosis , Copper , Homeostasis , Copper/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Humans , Animals
3.
J Nutr Biochem ; 132: 109697, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964724

ABSTRACT

Long-term alcohol overconsumption impairs intestinal and hepatic structure and function, along with dysregulation of zinc homeostasis. We previously found that zinc-glutathione (Zn-GSH) complex effectively suppressed alcohol-induced liver injury in mice. This study was undertaken to test the hypothesis that Zn-GSH suppresses alcohol-induced liver injury by modulating intestinal zinc transporters. Mice were subjected to long-term ethanol feeding, as per the NIAAA model, with groups receiving either an ethanol diet alone or an ethanol diet supplemented with Zn-GSH. Treatment groups were carefully monitored for alcohol consumption and subjected to a final binge drinking exposure. The results showed that Zn-GSH increased the survival rate and decreased the recovery time from binge drinking-induced drunkenness. Histopathological analyses demonstrated a reduction in liver steatosis and the preservation of intestinal integrity by Zn-GSH. It was observed that Zn-GSH prevented the reduction of Zn and GSH levels while increasing alcohol dehydrogenase and aldehyde dehydrogenase in both liver and intestine. Importantly, the expression and protein abundance of zinc transporters ZnT-1, ZIP-1, ZIP-4, ZIP-6, and ZIP-14, all of which are critically involved in intestinal zinc transport and homeostasis, were significantly increased or preserved by Zn-GSH in response to alcohol exposure. This study thus highlights the critical role of Zn-GSH in maintaining intestinal zinc homeostasis by modulating zinc transporters, thereby preventing alcohol-induced intestinal and hepatic injury.

SELECTION OF CITATIONS
SEARCH DETAIL