Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38863983

ABSTRACT

Phycobilisomes (PBSs) are photosynthetic light-harvesting antennae and appear to be loosely bound to photosystem I (PSI). We previously found unique protein bands in each PSI fraction in heterocysts of Anabaena sp. PCC 7120 by two-dimensional blue native/SDS-PAGE; however, the protein bands have not been identified. Here we analyzed the protein bands by mass spectrometry, which were identified as CpcL, one of the components in PBSs. As different composition and organization of Anabaena PSI-PBS supercomplexes were observed, the expression and binding properties of PBSs including CpcL to PSIs in this cyanobacterium may be diversified in response to its living environments.

2.
Biol Pharm Bull ; 47(6): 1136-1143, 2024.
Article in English | MEDLINE | ID: mdl-38866522

ABSTRACT

Ceramide (Cer) is synthesized de novo in the bilayer of the endoplasmic reticulum and transported to the cytosolic leaflet of the trans-Golgi apparatus for sphingomyelin (SM) synthesis. As the active site of SM synthase (SMS) is located on the luminal side of the Golgi membrane, Cer translocates to the lumen via transbilayer movement for SM synthesis. However, the mechanism of transbilayer movement is not fully understood. As the Cer-related translocases seem to localize near the SMS, the protein was identified using proximity-dependent biotin identification proteomics. Phospholipid scramblase 1 (PLSCR1), which is thought to act as a scramblase for phosphatidylserine and phosphatidylethanolamine, was identified as a protein proximal to the SMS isoforms SMS1 and SMS2. Although five isoforms of PLSCR have been reported in humans, only PLSCR1, PLSCR3, and PLSCR4 are expressed in HEK293T cells. Confocal microscopic analysis showed that PLSCR1 and PLSCR4 partially co-localized with p230, a trans-Golgi network marker, where SMS isoforms are localized. We established CRISPR/Cas9-mediated PLSCR1, PLSCR3, and PLSCR4 single-knockout cells and PLSCR1, 3, 4 triple knockout HEK293T cells. Liquid chromatography-tandem mass spectrometry revealed that the levels of species with distinct acyl chains in Cer and SM were not significantly different in single knockout cells or in the triple knockout cells compared to the wild-type cells. Our findings suggest that PLSCR1 is localized in the vicinity of SMS isoforms, however is not involved in the transbilayer movement of Cer for SM synthesis.


Subject(s)
Phospholipid Transfer Proteins , Sphingomyelins , Transferases (Other Substituted Phosphate Groups) , Humans , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , HEK293 Cells , Sphingomyelins/metabolism , Sphingomyelins/biosynthesis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Golgi Apparatus/metabolism , Golgi Apparatus/enzymology
3.
Photosynth Res ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935195

ABSTRACT

Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.

4.
PLoS One ; 19(5): e0301092, 2024.
Article in English | MEDLINE | ID: mdl-38718028

ABSTRACT

Globally, the rapid aging of the population is predicted to become even more severe in the second half of the 21st century. Thus, it is expected to establish a growing expectation for innovative, non-invasive health indicators and diagnostic methods to support disease prevention, care, and health promotion efforts. In this study, we aimed to establish a new health index and disease diagnosis method by analyzing the minerals and free amino acid components contained in hair shaft. We first evaluated the range of these components in healthy humans and then conducted a comparative analysis of these components in subjects with diabetes, hypertension, androgenetic alopecia, major depressive disorder, Alzheimer's disease, and stroke. In the statistical analysis, we first used a student's t test to compare the hair components of healthy people and those of patients with various diseases. However, many minerals and free amino acids showed significant differences in all diseases, because the sample size of the healthy group was very large compared to the sample size of the disease group. Therefore, we attempted a comparative analysis based on effect size, which is not affected by differences in sample size. As a result, we were able to narrow down the minerals and free amino acids for all diseases compared to t test analysis. For diabetes, the t test narrowed down the minerals to 15, whereas the effect size measurement narrowed it down to 3 (Cr, Mn, and Hg). For free amino acids, the t test narrowed it down to 15 minerals. By measuring the effect size, we were able to narrow it down to 7 (Gly, His, Lys, Pro, Ser, Thr, and Val). It is also possible to narrow down the minerals and free amino acids in other diseases, and to identify potential health indicators and disease-related components by using effect size.


Subject(s)
Amino Acids , Hair , Humans , Hair/chemistry , Male , Amino Acids/analysis , Amino Acids/metabolism , Female , Middle Aged , Adult , Alopecia/diagnosis , Aged , Minerals/analysis , Minerals/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Stroke , Hypertension , Depressive Disorder, Major/diagnosis , Diabetes Mellitus/diagnosis , Case-Control Studies
5.
Angew Chem Int Ed Engl ; 63(27): e202400218, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38658314

ABSTRACT

Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.


Subject(s)
14-3-3 Proteins , Arabidopsis , Protein Isoforms , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/antagonists & inhibitors , 14-3-3 Proteins/chemistry , Arabidopsis/metabolism , Arabidopsis/drug effects , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism , Molecular Structure , Drug Discovery , Plant Leaves/chemistry , Plant Leaves/metabolism
6.
Nat Commun ; 15(1): 3027, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637505

ABSTRACT

More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.


Subject(s)
Botulinum Toxins , Epilepsy , Humans , Anticonvulsants/metabolism , Cryoelectron Microscopy , Levetiracetam/therapeutic use , Epilepsy/drug therapy , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38442179

ABSTRACT

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Subject(s)
Photosystem I Protein Complex , Rhodophyta , Phylogeny , Photosystem I Protein Complex/genetics , Biological Evolution , Cryoelectron Microscopy , Rhodophyta/genetics
8.
Nat Commun ; 15(1): 2496, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548776

ABSTRACT

Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.


Subject(s)
Biological Phenomena , Callithrix , Animals , Mice , Male , Proteome/metabolism , Proteomics , Synapses/metabolism
9.
J Pharmacol Sci ; 154(3): 209-217, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395522

ABSTRACT

Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to S-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein S-nitrosylation.


Subject(s)
Arginine , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Arginine/metabolism , Cysteine , Histones/metabolism , RNA
10.
Angew Chem Int Ed Engl ; 63(13): e202318635, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38408266

ABSTRACT

The Sabatier principle states that catalytic activity can be maximized when the substrate binding affinity is neither too strong nor too weak. Recent studies have shown that the activity of several hydrolases is maximized at intermediate values of the binding affinity (Michaelis-Menten constant: Km ). However, it remains unclear whether this concept of artificial catalysis is applicable to enzymes in general, especially for those which have evolved under different reaction environments. Herein, we show that the activity of phosphoserine phosphatase is also enhanced at an intermediate Km value of approximately 0.5 mM. Within our dataset, the variation of Km by three orders of magnitude accounted for a roughly 18-fold variation in the activity. Owing to the high phylogenetic and physiological diversity of our dataset, our results support the importance of optimizing Km for enzymes in general. On the other hand, a 77-fold variation in the activity was attributed to other physicochemical parameters, such as the Arrhenius prefactor of kcat , and could not be explained by the Sabatier principle. Therefore, while tuning the binding affinity according to the Sabatier principle is an important consideration, the Km value is only one of many physicochemical parameters which must be optimized to maximize enzymatic activity.


Subject(s)
Phosphoric Monoester Hydrolases , Phosphoserine , Phylogeny
11.
J Biol Chem ; 300(3): 105679, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272219

ABSTRACT

Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Butanones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Humans , Cell Line, Tumor , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
12.
Eur J Pharmacol ; 960: 176156, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059445

ABSTRACT

Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed. In this study, we established and applied a system for in vitro screening of ASNS inhibitors, and found a promising unique bisabolane-type meroterpenoid molecule, bisabosqual A (Bis A), able to covalently modify K556 site of ASNS protein. Bis A targeted ASNS to suppress cell proliferation of human non-small cell lung cancer A549 cells and exhibited a synergistic effect with L-asparaginase (L-ASNase). Mechanistically, Bis A promoted oxidative stress and apoptosis, while inhibiting autophagy, cell migration and epithelial-mesenchymal transition (EMT), impeding cancer cell development. Moreover, Bis A induced negative feedback pathways containing the GCN2-eIF2α-ATF4, PI3K-AKT-mTORC1 and RAF-MEK-ERK axes, but combination treatment of Bis A and rapamycin/torin-1 overcame the potential drug resistance triggered by mTOR pathways. Our study demonstrates that ASNS inhibition is promising for cancer chemotherapy, and Bis A is a potential lead ASNS inhibitor for anticancer development.


Subject(s)
Aspartate-Ammonia Ligase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Asparagine/pharmacology , Asparagine/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Aspartate-Ammonia Ligase/metabolism , A549 Cells , Phosphatidylinositol 3-Kinases , Lung Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation
13.
Cell Death Discov ; 9(1): 467, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135680

ABSTRACT

IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.

14.
Oncol Res ; 31(6): 833-844, 2023.
Article in English | MEDLINE | ID: mdl-37744270

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately 400 times less active than H-006. H-006-induced cell death was rescued by the addition of the DHODH product orotic acid. Moreover, metabolome analysis revealed that H-006 treatment promotes marked accumulation of the DHODH substrate dihydroorotic acid. These results suggest that NPD723 is reduced in cells to its active metabolite H-006, which then targets DHODH and suppresses cancer cell growth. Thus, H-006-related drugs represent a potentially powerful treatment for cancer and other diseases.


Subject(s)
Dihydroorotate Dehydrogenase , Proteomics , Humans , Cell Transformation, Neoplastic , Cell Cycle , Cell Death
15.
Genes Dev ; 37(15-16): 724-742, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37612136

ABSTRACT

Histidine (His) residues are methylated in various proteins, but their roles and regulation mechanisms remain unknown. Here, we show that carnosine N-methyltransferase 1 (CARNMT1), a known His methyltransferase of dipeptide carnosine (ßAla-His), is a major His N1-position-specific methyltransferase. We found that 52 His sites in 20 proteins underwent CARNMT1-mediated methylation. The consensus methylation site for CARNMT1 was identified as Cx(F/Y)xH, a C3H zinc finger (C3H ZF) motif. CARNMT1-deficient and catalytically inactive mutant mice showed embryonic lethality. Among the CARNMT1 target C3H ZF proteins, RNA degradation mediated by Roquin and tristetraprolin (TTP) was affected by CARNMT1 and its enzymatic activity. Furthermore, the recognition of the 3' splice site of the CARNMT1 target C3H ZF protein U2AF1 was perturbed, and pre-mRNA alternative splicing (AS) was affected by CARNMT1 deficiency. These findings indicate that CARNMT1-mediated protein His methylation, which is essential for embryogenesis, plays roles in diverse aspects of RNA metabolism by targeting C3H ZF-type RNA-binding proteins and modulating their functions, including pre-mRNA AS and mRNA degradation regulation.


Subject(s)
Carnosine , Animals , Mice , Mice, Inbred C3H , Histidine/genetics , RNA Precursors , Methyltransferases/genetics , RNA Splice Sites , Zinc Fingers
16.
FEBS J ; 290(22): 5373-5394, 2023 11.
Article in English | MEDLINE | ID: mdl-37552474

ABSTRACT

Premelanosome protein (PMEL), a melanocyte-specific glycoprotein, has an essential role in melanosome maturation, assembling amyloid fibrils for melanin deposition. PMEL undergoes several post-translational modifications, including N- and O-glycosylations, which are associated with proper melanosome development. C-mannosylation is a rare type of protein glycosylation at a tryptophan residue that might regulate the secretion and localization of proteins. PMEL has one putative C-mannosylation site in its core amyloid fragment (CAF); however, there is no report focusing on C-mannosylation of PMEL. To investigate this, we expressed recombinant PMEL in SK-MEL-28 human melanoma cells and purified the protein. Mass spectrometry analyses demonstrated that human PMEL is C-mannosylated at multiple tryptophan residues in its CAF and N-terminal fragment (NTF). In addition to the W153 or W156 residue (CAF), which lies in the consensus sequence for C-mannosylation, the W104 residue (NTF) was C-mannosylated without the consensus sequence. To determine the effects of the modifications, we deleted the PMEL gene by using CRISPR/Cas9 technology and re-expressed wild-type or C-mannosylation-defective mutants of PMEL, in which the C-mannosylated tryptophan was replaced with a phenylalanine residue (WF mutation), in SK-MEL-28 cells. Importantly, fibril-containing melanosomes were significantly decreased in W104F mutant PMEL-re-expressing cells compared with wild-type PMEL, observed using transmission electron microscopy. Furthermore, western blot and immunofluorescence analysis suggested that the W104F mutation may cause mild endoplasmic reticulumretention, possibly associated with early misfolding, and lysosomal misaggregation, thus reducing functional fibril formation. Our results demonstrate that C-mannosylation of PMEL is required for proper melanosome development by regulating PMEL-derived fibril formation.


Subject(s)
Amyloid , Tryptophan , Humans , Glycosylation , Tryptophan/genetics , Tryptophan/metabolism , Amyloid/chemistry , Melanosomes/genetics , Melanosomes/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Amyloidogenic Proteins/metabolism , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/chemistry , gp100 Melanoma Antigen/metabolism
17.
EMBO Rep ; 24(11): e56864, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37575008

ABSTRACT

Kinesin-driven intracellular transport is essential for various cell biological events and thus plays a crucial role in many pathological processes. However, little is known about the molecular basis of the specific and dynamic cargo-binding mechanism of kinesins. Here, an integrated structural analysis of the KIF3/KAP3 and KIF3/KAP3-APC complexes unveils the mechanism by which KIF3/KAP3 can dynamically grasp APC in a two-step manner, which suggests kinesin-cargo recognition dynamics composed of cargo loading, locking, and release. Our finding is the first demonstration of the two-step cargo recognition and stabilization mechanism of kinesins, which provides novel insights into the intracellular trafficking machinery.


Subject(s)
Cell Communication , Kinesins , Kinesins/metabolism , Biological Transport , Microtubules/metabolism
18.
Nat Commun ; 14(1): 4103, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460559

ABSTRACT

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.


Subject(s)
Histones , Nucleosomes , Histones/metabolism , CREB-Binding Protein/genetics , Acetylation , Epigenesis, Genetic , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
19.
Elife ; 122023 07 18.
Article in English | MEDLINE | ID: mdl-37461317

ABSTRACT

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.


In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle ­ a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA ­ a necessary step for cell division ­ and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.


Subject(s)
Mannose , Neoplasms , Humans , Cisplatin , Genomic Instability , Nucleotides , DNA Replication
20.
Cell Death Dis ; 14(6): 358, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37308486

ABSTRACT

Transglutaminase 2 (TG2) is a multifunctional protein that promotes or suppresses tumorigenesis, depending on intracellular location and conformational structure. Acyclic retinoid (ACR) is an orally administered vitamin A derivative that prevents hepatocellular carcinoma (HCC) recurrence by targeting liver cancer stem cells (CSCs). In this study, we examined the subcellular location-dependent effects of ACR on TG2 activity at a structural level and characterized the functional role of TG2 and its downstream molecular mechanism in the selective depletion of liver CSCs. A binding assay with high-performance magnetic nanobeads and structural dynamic analysis with native gel electrophoresis and size-exclusion chromatography-coupled multi-angle light scattering or small-angle X-ray scattering showed that ACR binds directly to TG2, induces oligomer formation of TG2, and inhibits the transamidase activity of cytoplasmic TG2 in HCC cells. The loss-of-function of TG2 suppressed the expression of stemness-related genes, spheroid proliferation and selectively induced cell death in an EpCAM+ liver CSC subpopulation in HCC cells. Proteome analysis revealed that TG2 inhibition suppressed the gene and protein expression of exostosin glycosyltransferase 1 (EXT1) and heparan sulfate biosynthesis in HCC cells. In contrast, high levels of ACR increased intracellular Ca2+ concentrations along with an increase in apoptotic cells, which probably contributed to the enhanced transamidase activity of nuclear TG2. This study demonstrates that ACR could act as a novel TG2 inhibitor; TG2-mediated EXT1 signaling is a promising therapeutic target in the prevention of HCC by disrupting liver CSCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Neoplastic Stem Cells , Glycosyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...