Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dis ; 230(2): e254-e267, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38123455

ABSTRACT

BACKGROUND: In Santiago, Chile, where typhoid had been hyperendemic (1977-1991), we investigated whether residual chronic carriers could be detected among household contacts of non-travel-related typhoid cases occurring during 2017-2019. METHODS: Culture-confirmed cases were classified as autochthonous (domestically acquired) versus travel/immigration related. Household contacts of cases had stool cultures and serum Vi antibody measurements to detect chronic Salmonella Typhi carriers. Whole genome sequences of acute cases and their epidemiologically linked chronic carrier isolates were compared. RESULTS: Five of 16 autochthonous typhoid cases (31.3%) were linked to 4 chronic carriers in case households; 2 cases (onsets 23 months apart) were linked to the same carrier. Carriers were women aged 69-79 years with gallbladder dysfunction and Typhi fecal excretion; 3 had highly elevated serum anti-Vi titers. Genomic analyses revealed close identity (≤11 core genome single-nucleotide polymorphism [SNP] differences) between case and epidemiologically linked carrier isolates; all were genotypes prevalent in 1980s Santiago. A cluster of 4 additional autochthonous cases unlinked to a carrier was identified based on genomic identity (0-1 SNPs). Travel/immigration isolate genotypes were typical for the countries of travel/immigration. CONCLUSIONS: Although autochthonous typhoid cases in Santiago are currently rare, 5 of 16 such cases (31.3%) were linked to elderly chronic carriers identified among household contacts of cases.


Subject(s)
Carrier State , Salmonella typhi , Typhoid Fever , Humans , Chile/epidemiology , Typhoid Fever/epidemiology , Typhoid Fever/microbiology , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Female , Aged , Carrier State/epidemiology , Carrier State/microbiology , Male , Middle Aged , Adult , Feces/microbiology , Genotype , Whole Genome Sequencing , Travel , Child , Polymorphism, Single Nucleotide , Child, Preschool , Young Adult , Aged, 80 and over , Adolescent
2.
PLoS Negl Trop Dis ; 16(6): e0010178, 2022 06.
Article in English | MEDLINE | ID: mdl-35767580

ABSTRACT

Typhoid fever epidemiology was investigated rigorously in Santiago, Chile during the 1980s, when Salmonella enterica serovar Typhi (S. Typhi) caused seasonal, hyperendemic disease. Targeted interventions reduced the annual typhoid incidence rates from 128-220 cases/105 population occurring between 1977-1984 to <8 cases/105 from 1992 onwards. As such, Santiago represents a contemporary example of the epidemiologic transition of an industrialized city from amplified hyperendemic typhoid fever to a period when typhoid is no longer endemic. We used whole genome sequencing (WGS) and phylogenetic analysis to compare the genotypes of S. Typhi cultured from acute cases of typhoid fever occurring in Santiago during the hyperendemic period of the 1980s (n = 74) versus the nonendemic 2010s (n = 80) when typhoid fever was rare. The genotype distribution between "historical" (1980s) isolates and "modern" (2011-2016) isolates was similar, with genotypes 3.5 and 2 comprising the majority of isolations, and 73/80 (91.3%) of modern isolates matching a genotype detected in the 1980s. Additionally, phylogenomically 'ancient' genotypes 1.1 and 1.2.1, uncommon in the global collections, were also detected in both eras, with a notable rise amongst the modern isolates. Thus, genotypes of S. Typhi causing acute illness in the modern nonendemic era match the genotypes circulating during the hyperendemic 1980s. The persistence of historical genotypes may be explained by chronic typhoid carriers originally infected during or before the 1980s.


Subject(s)
Salmonella typhi , Typhoid Fever , Chile/epidemiology , Humans , Phylogeny , Salmonella typhi/genetics , Typhoid Fever/epidemiology , Whole Genome Sequencing
3.
Emerg Infect Dis ; 26(11): 2736-2740, 2020 11.
Article in English | MEDLINE | ID: mdl-33079054

ABSTRACT

Salmonella enterica serovar Typhi H58, an antimicrobial-resistant lineage, is globally disseminated but has not been reported in Latin America. Genomic analysis revealed 3 independent introductions of Salmonella Typhi H58 with reduced fluoroquinolone susceptibility into Chile. Our findings highlight the utility of enhanced genomic surveillance for typhoid fever in this region.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Fluoroquinolones/pharmacology , Salmonella typhi , Typhoid Fever , Chile/epidemiology , Humans , Microbial Sensitivity Tests , Salmonella typhi/drug effects , Salmonella typhi/genetics , Typhoid Fever/epidemiology , Typhoid Fever/microbiology
4.
Nat Commun ; 11(1): 4918, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004800

ABSTRACT

In order to control and eradicate epidemic cholera, we need to understand how epidemics begin, how they spread, and how they decline and eventually end. This requires extensive sampling of epidemic disease over time, alongside the background of endemic disease that may exist concurrently with the epidemic. The unique circumstances surrounding the Argentinian cholera epidemic of 1992-1998 presented an opportunity to do this. Here, we use 490 Argentinian V. cholerae genome sequences to characterise the variation within, and between, epidemic and endemic V. cholerae. We show that, during the 1992-1998 cholera epidemic, the invariant epidemic clone co-existed alongside highly diverse members of the Vibrio cholerae species in Argentina, and we contrast the clonality of epidemic V. cholerae with the background diversity of local endemic bacteria. Our findings refine and add nuance to our genomic definitions of epidemic and endemic cholera, and are of direct relevance to controlling current and future cholera epidemics.


Subject(s)
Cholera/microbiology , Endemic Diseases/prevention & control , Genome, Bacterial/genetics , Pandemics/prevention & control , Vibrio cholerae/genetics , Argentina/epidemiology , Cholera/epidemiology , Cholera/prevention & control , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , History, 19th Century , History, 20th Century , Humans , Molecular Sequence Annotation , Pandemics/history , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Vibrio cholerae/isolation & purification , Vibrio cholerae/pathogenicity
5.
J Bacteriol ; 197(2): 392-403, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25404692

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.


Subject(s)
Alleles , Bacterial Toxins/genetics , Enterotoxins/genetics , Escherichia coli Infections/genetics , Escherichia coli Proteins/genetics , Bacterial Toxins/chemistry , Enterotoxins/chemistry , Escherichia coli Proteins/chemistry
6.
Nature ; 477(7365): 462-5, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21866102

ABSTRACT

Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two biotypes known as 'classical' and 'El Tor') and the derivative O139 can cause epidemic cholera. It is believed that the first six cholera pandemics were caused by the classical biotype, but El Tor has subsequently spread globally and replaced the classical biotype in the current pandemic. Detailed molecular epidemiological mapping of cholera has been compromised by a reliance on sub-genomic regions such as mobile elements to infer relationships, making El Tor isolates associated with the seventh pandemic seem superficially diverse. To understand the underlying phylogeny of the lineage responsible for the current pandemic, we identified high-resolution markers (single nucleotide polymorphisms; SNPs) in 154 whole-genome sequences of globally and temporally representative V. cholerae isolates. Using this phylogeny, we show here that the seventh pandemic has spread from the Bay of Bengal in at least three independent but overlapping waves with a common ancestor in the 1950s, and identify several transcontinental transmission events. Additionally, we show how the acquisition of the SXT family of antibiotic resistance elements has shaped pandemic spread, and show that this family was first acquired at least ten years before its discovery in V. cholerae.


Subject(s)
Cholera/epidemiology , Cholera/transmission , Pandemics/statistics & numerical data , Vibrio cholerae/genetics , Vibrio cholerae/isolation & purification , Cholera/microbiology , Genome, Bacterial/genetics , Haiti/epidemiology , Humans , Likelihood Functions , Molecular Epidemiology , Phylogeny , Polymorphism, Single Nucleotide/genetics , Vibrio cholerae/classification , Zimbabwe/epidemiology
7.
PLoS Negl Trop Dis ; 5(6): e1157, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21666788

ABSTRACT

BACKGROUND: Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. METHODOLOGY/PRINCIPAL FINDINGS: Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P=0.007), IL-2 (P=0.03), IL-5 (P=0.01), and IL-10 (P=0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P=0.03; CCL23, P=0.008, HRK, P=0.005), down-regulation of microRNA hsa-let-7d (P=0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P=0.0002; RNASE2, up-regulated, P=0.009; RNASE3, up-regulated, p=0.03). CONCLUSIONS/SIGNIFICANCE: Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases.


Subject(s)
Ascariasis/immunology , Blood/immunology , Cytokines/metabolism , Gene Expression , Leukocytes, Mononuclear/immunology , Trichuriasis/immunology , Cells, Cultured , Child , Cross-Sectional Studies , Female , Gene Expression Profiling , Humans , Male , Microarray Analysis
8.
BMC Microbiol ; 9: 237, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19922635

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. RESULTS: 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. CONCLUSION: The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.


Subject(s)
Genetic Variation , Phenotype , Salmonella Infections/microbiology , Salmonella enteritidis/genetics , Caco-2 Cells , Disease Outbreaks , Genomic Islands/genetics , Genomics , Humans , Plasmids/genetics , Prophages/genetics , Salmonella Infections/epidemiology , Salmonella enteritidis/metabolism , Uruguay/epidemiology
9.
Expert Rev Vaccines ; 1(4): 495-505, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12901588

ABSTRACT

For more than a century, bacteria and bacterial products have been used for the treatment of cancer. Starting from the practical observation of tumor regression in individuals with concomitant bacterial infection, the field has evolved into some standard clinical practices, such as the use of BCG for the treatment of superficial bladder cancer. However, in the last few years, new applications have started to emerge that may profoundly change the perspective of the field. BCG can be engineered to express cytokines to improve its efficacy. Bacteria such as Salmonella and Listeria can be attenuated by genetically-defined mutations and provide effective vehicles for DNA vaccines encoding tumor-associated antigens. Salmonella and nonpathogenic strains of Clostridium can selectively accumulate in tumors in vivo, providing attractive delivery systems to target immunomodulatory molecules and therapeutic agents to the tumor site. Many of these new developments have been attempted for prophylactic or therapeutic vaccination in several different experimental models of cancer and in many cases, results from clinical trials are now emerging. There is still some way to go before achieving products that could be in routine use, but the field has great promise for the development of more effective immunotherapies for several different cancers. In this paper, we will review the current state of such applications and highlight some of the directions that the field may take.


Subject(s)
Bacteria/immunology , Immunotherapy , Neoplasms/therapy , Adjuvants, Immunologic , BCG Vaccine/immunology , BCG Vaccine/therapeutic use , Clostridium/immunology , Genetic Engineering , Humans , Listeria/immunology , Salmonella/immunology , Vaccines, Attenuated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL