Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Sensors (Basel) ; 24(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610260

ABSTRACT

Wearable technology and neuroimaging equipment using photoplethysmography (PPG) have become increasingly popularized in recent years. Several investigations deriving pulse rate variability (PRV) from PPG have demonstrated that a slight bias exists compared to concurrent heart rate variability (HRV) estimates. PPG devices commonly sample at ~20-100 Hz, where the minimum sampling frequency to derive valid PRV metrics is unknown. Further, due to different autonomic innervation, it is unknown if PRV metrics are harmonious between the cerebral and peripheral vasculature. Cardiac activity via electrocardiography (ECG) and PPG were obtained concurrently in 54 participants (29 females) in an upright orthostatic position. PPG data were collected at three anatomical locations: left third phalanx, middle cerebral artery, and posterior cerebral artery using a Finapres NOVA device and transcranial Doppler ultrasound. Data were sampled for five minutes at 1000 Hz and downsampled to frequencies ranging from 20 to 500 Hz. HRV (via ECG) and PRV (via PPG) were quantified and compared at 1000 Hz using Bland-Altman plots and coefficient of variation (CoV). A sampling frequency of ~100-200 Hz was required to produce PRV metrics with a bias of less than 2%, while a sampling rate of ~40-50 Hz elicited a bias smaller than 20%. At 1000 Hz, time- and frequency-domain PRV measures were slightly elevated compared to those derived from HRV (mean bias: ~1-8%). In conjunction with previous reports, PRV and HRV were not surrogate biomarkers due to the different nature of the collected waveforms. Nevertheless, PRV estimates displayed greater validity at a lower sampling rate compared to HRV estimates.


Subject(s)
Autonomic Nervous System , Benchmarking , Female , Humans , Heart Rate , Correlation of Data , Electrocardiography
2.
Sensors (Basel) ; 24(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38676247

ABSTRACT

Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.


Subject(s)
Hemoglobins , Oxygen , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/metabolism , Adult , Reproducibility of Results , Oxygen/metabolism , Oxygen/analysis , Hemoglobins/analysis , Hemoglobins/metabolism , Oxygen Saturation/physiology , Young Adult , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis
3.
Pediatr Neurol ; 150: 97-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006666

ABSTRACT

BACKGROUND: Sport-related concussion (SRC) has been shown to induce cerebral neurophysiological deficits, quantifiable with electroencephalography (EEG). As the adolescent brain is undergoing rapid neurodevelopment, it is fundamental to understand both the short- and long-term ramifications SRC may have on neuronal functioning. The current systematic review sought to amalgamate the literature regarding both acute/subacute (≤28 days) and chronic (>28 days) effects of SRC in adolescents via EEG and the diagnostic accuracy of this tool. METHODS: The review was registered within the Prospero database (CRD42021275256). Search strategies were created and input into the PubMed database, where three authors completed all screening. Risk of bias assessments were completed using the Scottish Intercollegiate Guideline Network and Methodological Index for Non-Randomized Studies. RESULTS: A total of 128 articles were identified; however, only seven satisfied all inclusion criteria. The studies ranged from 2012 to 2021 and included sample sizes of 21 to 81 participants, albeit only ∼14% of the included athletes were females. The studies displayed low-to-high levels of bias due to the small sample sizes and preliminary nature of most investigations. Although heterogeneous methods, tasks, and analytical techniques were used, 86% of the studies found differences compared with control athletes, in both the symptomatic and asymptomatic phases of SRC. One study used raw EEG data as a diagnostic indicator demonstrating promise; however, more research and standardization are a necessity. CONCLUSIONS: Collectively, the findings highlight the utility of EEG in assessing adolescent SRC; however, future studies should consider important covariates including biological sex, maturation status, and development.


Subject(s)
Athletic Injuries , Brain Concussion , Youth Sports , Female , Adolescent , Humans , Male , Athletic Injuries/complications , Athletic Injuries/diagnosis , Brain Concussion/diagnosis , Brain Concussion/etiology , Brain , Athletes
4.
Adv Exp Med Biol ; 1438: 15-20, 2023.
Article in English | MEDLINE | ID: mdl-37845433

ABSTRACT

Hypercapnia is commonly used as a vasodilatory stimulus in both basic and clinical research. There have been conflicting reports about whether cerebral metabolic rate of oxygen (CMRO2) is maintained at normal levels during increases of cerebral blood flow (CBF) and oxygen delivery caused by hypercapnia.This study aims to provide insight into how hypercapnia may impact CMRO2 and brain mitochondrial function. We introduce data from mouse cortex collected with a novel multimodality system which combines MRI and near-infrared spectroscopy (NIRS). We quantify CBF, tissue oxygen saturation (StO2), oxidation state of the mitochondrial enzyme cytochrome c oxidase (CCO), and CMRO2.During hypercapnia, CMRO2 did not change while CBF, StO2, and the oxidation state of CCO increased significantly. This paper supports the conclusion that hypercapnia does not change CMRO2. It also introduces the application of a multimodal NIRS-MRI system which enables non-invasive quantification of CMRO2, and other physiological variables, in the cerebral cortex of mouse models.


Subject(s)
Hypercapnia , Oxygen , Mice , Animals , Oxygen/metabolism , Cerebral Cortex/metabolism , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Oxygen Consumption/physiology , Brain/metabolism
5.
Ann Neurol ; 94(6): 1067-1079, 2023 12.
Article in English | MEDLINE | ID: mdl-37605937

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is a degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. It has been hypothesized that hypoxia plays a role in the pathogenesis of MS. This study was undertaken to investigate the reproducibility of non-invasively measured cortical microvascular hemoglobin oxygenation (St O2 ) using frequency domain near-infrared spectroscopy (fdNIRS), investigate its temporal pattern of hypoxia in people with MS (pwMS), and its relationship with neurocognitive function and mood. METHODS: We investigated the reproducibility of fdNIRS measurements. We measured cortical hypoxia in pwMS, and the relationships between St O2 , neurocognitive function, fatigue, and measures of physical disability. Furthermore, we cataloged the temporal pattern of St O2 measured at 1-week intervals for 4 weeks, and at 8 weeks and ~1 year. RESULTS: We show that fdNIRS parameters were highly reproducible in 7 healthy control participants measured over 6 days (p > 0.05). There was low variability between and within subjects. In line with our previous findings, we show that 33% of pwMS (n = 88) have cortical microvascular hypoxia. Over 8 weeks and at ~1 year, St O2 values for normoxic and hypoxic groups did not change significantly. There was no significant association between cognitive function and St O2 . This conclusion should be revisited as only a small proportion of the relapsing-remitting MS group (21%) was cognitively impaired. INTERPRETATION: The fdNIRS parameters have high reproducibility and repeatability, and we have demonstrated that hypoxia in MS is a chronic condition, lasting at least a year. The results show a weak relationship between cognitive functioning and oxygenation, indicating future study is required. ANN NEUROL 2023;94:1067-1079.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Reproducibility of Results , Fatigue/etiology , Hypoxia
6.
Physiol Meas ; 44(7)2023 07 24.
Article in English | MEDLINE | ID: mdl-37399810

ABSTRACT

Introduction. Neurovascular coupling (NVC) describes the coupling of neuronal metabolic demand to blood supply, which has shown to be impaired with chronic hypertension, as well as with prolonged hypotension. However, it is unknown the extent the NVC response remains intact during transient hypo- and hyper-tensive challenges.Methods. Fifteen healthy participants (9 females/6 males) completed a visual NVC task ('Where's Waldo?') over two testing sessions, consisting of cyclical 30 s eyes closed and opened portions. The Waldo task was completed at rest (8 min) and concurrently during squat-stand maneuvers (SSMs; 5 min) at 0.05 Hz (10 s squat/stand) and 0.10 Hz (5 s squat-stand). SSMs induce 30-50 mmHg blood pressure oscillations, resulting in cyclical hypo- and hyper-tensive swings within the cerebrovasculature, allowing for the quantification of the NVC response during transient hypo- and hyper-tension. Outcome NVC metrics included baseline, peak, relative increase in cerebral blood velocity (CBv), and area-under-the-curve (AUC30) within the posterior and middle cerebral arteries indexed via transcranial Doppler ultrasound. Within-subject, between-task comparisons were conducted using analysis of variance with effect size calculations.Results. Differences were noted between rest and SSM conditions in both vessels for peak CBv (allp< 0.045) and the relative increase in CBv (allp <0.049) with small-to-large effect sizes. AUC30 metrics were similar between all tasks (allp> 0.090) with negligible-to-small effect sizes.Conclusions. Despite the SSMs eliciting ∼30-50 mmHg blood pressure oscillations, similar levels of activation occurred within the neurovascular unit across all conditions. This demonstrated the signaling of the NVC response remained intact during cyclical blood pressure challenges.


Subject(s)
Hypertension , Hypotension , Neurovascular Coupling , Male , Female , Humans , Neurovascular Coupling/physiology , Blood Pressure/physiology , Middle Cerebral Artery/physiology , Cerebrovascular Circulation
7.
Neurophotonics ; 10(3): 035005, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37409179

ABSTRACT

Significance: Functional near-infrared spectroscopy (fNIRS), with its measure of delta hemoglobin concentration, has shown promise as a monitoring tool for the functional assessment of neurological disorders and brain injury. Analysis of fNIRS data often involves averaging data from several channel pairs in a region. Although this greatly reduces the processing time, it is uncertain how it affects the ability to detect changes post injury. Aim: We aimed to determine how averaging data within regions impacts the ability to differentiate between post-concussion and healthy controls. Approach: We compared interhemispheric coherence data from 16 channel pairs across the left and right dorsolateral prefrontal cortex during a task and a rest period. We compared the statistical power for differentiating groups that was obtained when undertaking no averaging, vs. averaging data from 2, 4, or 8 source detector pairs. Results: Coherence was significantly reduced in the concussion group compared with controls when no averaging was undertaken. Averaging all 8 channel pairs before undertaking the coherence analysis resulted in no group differences. Conclusions: Averaging between fiber pairs may eliminate the ability to detect group differences. It is proposed that even adjacent fiber pairs may have unique information, so averaging must be done with caution when monitoring brain disorders or injury.

8.
Stroke Vasc Neurol ; 8(6): 486-502, 2023 12 29.
Article in English | MEDLINE | ID: mdl-37137522

ABSTRACT

BACKGROUND: Inflammation-exacerbated secondary brain injury and limited tissue regeneration are barriers to favourable prognosis after intracerebral haemorrhage (ICH). As a regulator of inflammation and lipid metabolism, Liver X receptor (LXR) has the potential to alter microglia/macrophage (M/M) phenotype, and assist tissue repair by promoting cholesterol efflux and recycling from phagocytes. To support potential clinical translation, the benefits of enhanced LXR signalling are examined in experimental ICH. METHODS: Collagenase-induced ICH mice were treated with the LXR agonist GW3965 or vehicle. Behavioural tests were conducted at multiple time points. Lesion and haematoma volume, and other brain parameters were assessed using multimodal MRI with T2-weighted, diffusion tensor imaging and dynamic contrast-enhanced MRI sequences. The fixed brain cryosections were stained and confocal microscopy was applied to detect LXR downstream genes, M/M phenotype, lipid/cholesterol-laden phagocytes, oligodendrocyte lineage cells and neural stem cells. Western blot and real-time qPCR were also used. CX3CR1CreER: Rosa26iDTR mice were employed for M/M-depletion experiments. RESULTS: GW3965 treatment reduced lesion volume and white matter injury, and promoted haematoma clearance. Treated mice upregulated LXR downstream genes including ABCA1 and Apolipoprotein E, and had reduced density of M/M that apparently shifted from proinflammatory interleukin-1ß+ to Arginase1+CD206+ regulatory phenotype. Fewer cholesterol crystal or myelin debris-laden phagocytes were observed in GW3965 mice. LXR activation increased the number of Olig2+PDGFRα+ precursors and Olig2+CC1+ mature oligodendrocytes in perihaematomal regions, and elevated SOX2+ or nestin+ neural stem cells in lesion and subventricular zone. MRI results supported better lesion recovery by GW3965, and this was corroborated by return to pre-ICH values of functional rotarod activity. The therapeutic effects of GW3965 were abrogated by M/M depletion in CX3CR1CreER: Rosa26iDTR mice. CONCLUSIONS: LXR agonism using GW3965 reduced brain injury, promoted beneficial properties of M/M and facilitated tissue repair correspondent with enhanced cholesterol recycling.


Subject(s)
Brain Injuries , Microglia , Mice , Animals , Liver X Receptors/agonists , Liver X Receptors/metabolism , Microglia/metabolism , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Diffusion Tensor Imaging , Macrophages/metabolism , Cholesterol/metabolism , Cholesterol/pharmacology , Cerebral Hemorrhage/metabolism , Inflammation , Brain Injuries/metabolism , Hematoma
9.
J Neurol ; 270(7): 3303-3314, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37210689

ABSTRACT

OBJECTIVE: Systemic hypoxia occurs in COVID-19 infection; however, it is unknown if cerebral hypoxia occurs in convalescent individuals. We have evidence from other conditions associated with central nervous system inflammation that hypoxia may occur in the brain. If so, hypoxia could reduce the quality of life and brain function. This study was undertaken to assess if brain hypoxia occurs in individuals after recovery from acute COVID-19 infection and if this hypoxia is associated with neurocognitive impairment and reduced quality of life. METHODS: Using frequency-domain near-infrared spectroscopy (fdNIRS), we measured cerebral tissue oxygen saturation (StO2) (a measure of hypoxia) in participants who had contracted COVID-19 at least 8 weeks prior to the study visit and healthy controls. We also conducted neuropsychological assessments and health-related quality of life assessments, fatigue, and depression. RESULTS: Fifty-six percent of the post-COVID-19 participants self-reported having persistent symptoms (from a list of 18), with the most reported symptom being fatigue and brain fog. There was a gradation in the decrease of oxyhemoglobin between controls, and normoxic and hypoxic post-COVID-19 groups (31.7 ± 8.3 µM, 27.8 ± 7.0 µM and 21.1 ± 7.2 µM, respectively, p = 0.028, p = 0.005, and p = 0.081). We detected that 24% of convalescent individuals' post-COVID-19 infection had reduced StO2 in the brain and that this relates to reduced neurological function and quality of life. INTERPRETATION: We believe that the hypoxia reported here will have health consequences for these individuals, and this is reflected in the correlation of hypoxia with greater symptomology. With the fdNIRS technology, combined with neuropsychological assessment, we may be able to identify individuals at risk of hypoxia-related symptomology and target individuals that are likely to respond to treatments aimed at improving cerebral oxygenation.


Subject(s)
COVID-19 , Hypoxia, Brain , Humans , Oxygen , Quality of Life , COVID-19/complications , Hypoxia, Brain/complications , Hypoxia, Brain/diagnostic imaging , Hypoxia , Brain/diagnostic imaging
10.
J Cereb Blood Flow Metab ; 43(8): 1351-1364, 2023 08.
Article in English | MEDLINE | ID: mdl-36950950

ABSTRACT

Quantifying relationships between cerebral blood flow (CBF), mitochondrial function (cytochrome c oxidase oxidation state), and metabolic rate of oxygen (CMRO2) could provide useful insight into normal neurovascular coupling, as well as regulation of oxidative metabolism in neurological disorders. This paper uses a multimodal NIRS-MRI method to quantify these parameters in rodent brain and, in so doing, provides novel information on the regulation of oxygen metabolism by stimulating with hypercapnia or variations in oxygenation. Under hypercapnia, although oxygenation, oxidation state, and CBF increased, there was no increase in CMRO2. Also, there was no correlation between CBF and CCO oxidation state. Conversely, changing oxygenation resulted in a strong correlation between the oxidation of CCO and CBF. This proves that the association between CBF and the redox state of CCO is not fixed and depends on the type of perturbation. Having a means to measure CBF and CCO oxidation state simultaneously will help understanding their contribution to intact neurovascular coupling and detecting abnormal cellular oxygen metabolism in many neurological disorders.


Subject(s)
Electron Transport Complex IV , Hypercapnia , Mice , Animals , Electron Transport Complex IV/metabolism , Brain/blood supply , Oxygen/metabolism , Magnetic Resonance Imaging/methods
11.
Neurotrauma Rep ; 4(1): 64-70, 2023.
Article in English | MEDLINE | ID: mdl-36726868

ABSTRACT

Advanced neuroimaging techniques show promise as a biomarker for mild traumatic brain injury (mTBI). However, little research has evaluated cerebral hemodynamics or its relation to white matter microstructure post-mTBI in children. This novel pilot study examined differences in cerebral hemodynamics, as measured using functional near-infrared spectroscopy (fNIRS), and its association with diffusion tensor imaging (DTI) metrics in children with mTBI or mild orthopedic injury (OI) to address these gaps. Children 8.00-16.99 years of age with mTBI (n = 9) or OI (n = 6) were recruited in a pediatric emergency department, where acute injury characteristics were assessed. Participants completed DTI twice, post-acutely (2-33 days) and chronically (3 or 6 months), and fNIRS ∼1 month post-injury. Automated deterministic tractography was used to compute DTI metrics. There was reduced absolute phase globally and coherence in the dorsolateral pre-frontal cortex (DLPFC) after mTBI compared to the OI group. Coherence in the DLPFC and absolute phase globally showed distinct associations with fractional anisotropy in interhemispheric white matter pathways. Two fNIRS metrics (coherence and absolute phase) differentiated mTBI from OI in children. Variability in cerebral hemodynamics related to white matter microstructure. The results provide initial evidence that fNIRS may have utility as a clinical biomarker of pediatric mTBI.

12.
Cancer Immunol Immunother ; 72(3): 733-742, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36194288

ABSTRACT

BACKGROUND: The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS: We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS: Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION: MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT: We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.


Subject(s)
Glioblastoma , Glioma , Niacin , Mice , Animals , Monocytes/pathology , Glioma/pathology , Models, Animal , Magnetic Resonance Imaging/methods
13.
Adv Exp Med Biol ; 1395: 145-149, 2022.
Article in English | MEDLINE | ID: mdl-36527629

ABSTRACT

Many with multiple sclerosis (MS) have low cortical microvascular oxygen levels (hypoxia), which have been previously proposed to exacerbate inflammation in MS. We do not know if hypoxia impacts or relates to brain function. We hypothesise that within the MS population, those who have hypoxia may show reduced brain functional connectivity (FC). We recruited 20 MS participants and grouped them into normoxic and hypoxic groups (n = 10 in each group) using frequency-domain near-infrared spectroscopy (fdNIRS). Functional coherence of the haemodynamic signal, quantified with functional near-infrared spectroscopy (fNIRS) was used as a marker of brain function and was carried out during resting-state, finger-tapping, and while completing two neurocognitive tasks. Reduced FC was detected in the hypoxic MS group. fNIRS measures of haemodynamic coherence in MS could be a biomarker of functional impairment and/or disease progression.


Subject(s)
Multiple Sclerosis , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Multiple Sclerosis/diagnostic imaging , Brain , Oxygen , Hypoxia
14.
Phys Med Biol ; 67(20)2022 10 07.
Article in English | MEDLINE | ID: mdl-36055246

ABSTRACT

Objective. Focused ultrasound (FUS) use with and without microbubbles (MB) for investigation of the blood-nerve barrier (BNB) within the peripheral nervous system (PNS) has been performed in this study. We evaluate the feasibility of BNB opening in a rodent sciatic nerve model by direct vision FUS treatment and provide preliminary results of magnetic resonance guided FUS (MRgFUS).Approach. Twenty rodent bilateral sciatic nerves were investigated. Rodents were treated using a benchtop FUS system to directly visualize nerve FUS studies. Definity MB, Evans blue dye (EB) and latex micro beads were injected during studies. Selected animals underwent further compound muscle action potential (CMAP) studies. Sonication peak pressure (MPa), width, duty-cycle and duration as well as MB concentration were varied to investigate effective pressure threshold. Further preliminary MRgFUS studies were performed on selected animals. Immunohistochemistry and histological analysis under florescent microscopy were performed at termination of experiments to verify treatment outcomes.Main results. Three ultrasound pressures and three microbubble concentrations at a single sonication frequency (476.5 kHz) were performed under direct open targeting. Histological analysis demonstrated nerve internal architecture disruption at 1.2 MPa with 166.7µl kg-1while 0.3 MPa, with 40µl kg-1MB concentration was the lower threshold for consistently observed disruption of the BNB without anatomical microarchitecture disruption. EB leakage was confirmed at the target region in histological evaluation of nerve following MB injection and FUS sonication. Supra-harmonic emissions were detected during FUS exposures following MB injection but not at baseline reference, indicating effective MB response and stable cavitation. CMAP amplitudes showed delayed onset latency and lower amplitudes in sonicated nerves compared to control nerves without evidence of complete conduction block, suggesting a transient BNB disruption, while at lower limit pressure subtle conduction changes were observed. In MRgFUS, targeted nerves demonstrated further contrast agent leak as well as supra-harmonic frequency detection.Significance. Opening of the BNB in the PNS was achieved using FUS and MB in a rodent model. Ongoing work aims to refine FUS parameters for drug delivery into the nerve after experimental transient BNB disruption.


Subject(s)
Blood-Brain Barrier , Contrast Media , Animals , Blood-Brain Barrier/physiology , Blood-Nerve Barrier , Drug Delivery Systems/methods , Evans Blue , Latex , Magnetic Resonance Imaging , Microbubbles , Sonication/methods
15.
Environ Res ; 214(Pt 3): 114040, 2022 11.
Article in English | MEDLINE | ID: mdl-35952745

ABSTRACT

Bisphenol A (BPA) is a synthetic chemical used for the manufacturing of plastics, epoxy resin, and many personal care products. This ubiquitous endocrine disruptor is detectable in the urine of over 80% of North Americans. Although adverse neurodevelopmental outcomes have been observed in children with high gestational exposure to BPA, the effects of prenatal BPA on brain structure remain unclear. Here, using magnetic resonance imaging (MRI), we studied the associations of maternal BPA exposure with children's brain structure, as well as the impact of comparable BPA levels in a mouse model. Our human data showed that most maternal BPA exposure effects on brain volumes were small, with the largest effects observed in the opercular region of the inferior frontal gyrus (ρ = -0.2754), superior occipital gyrus (ρ = -0.2556), and postcentral gyrus (ρ = 0.2384). In mice, gestational exposure to an equivalent level of BPA (2.25 µg BPA/kg bw/day) induced structural alterations in brain regions including the superior olivary complex (SOC) and bed nucleus of stria terminalis (BNST) with larger effect sizes (1.07≤ Cohens d ≤ 1.53). Human (n = 87) and rodent (n = 8 each group) sample sizes, while small, are considered adequate to perform the primary endpoint analysis. Combined, these human and mouse data suggest that gestational exposure to low levels of BPA may have some impacts on the developing brain at the resolution of MRI.


Subject(s)
Endocrine Disruptors , Prenatal Exposure Delayed Effects , Animals , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/urine , Brain/diagnostic imaging , Child , Endocrine Disruptors/toxicity , Endocrine Disruptors/urine , Female , Humans , Mice , Phenols/toxicity , Phenols/urine , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced
17.
JMIR Res Protoc ; 11(3): e31308, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35315783

ABSTRACT

BACKGROUND: Approximately one-third of all concussions lead to persistent postconcussion syndrome (PPCS). Repetitive transcranial magnetic stimulation (rTMS) is a form of noninvasive brain stimulation that has been extensively used to treat refractory major depressive disorder and has a strong potential to be used as a treatment for patients with PPCS. Functional near-infrared spectroscopy (fNIRS) has already been used as a tool to assess patients with PPCS and may provide insight into the pathophysiology of rTMS treatment in patients with PPCS. OBJECTIVE: The primary objective of this research is to determine whether rTMS treatment improves symptom burden in patients with PPCS compared to sham treatment using the Rivermead postconcussion symptom questionnaire. The secondary objective is to explore the neuropathophysiological changes that occur following rTMS in participants with PPCS using fNIRS. Exploratory objectives include determining whether rTMS treatment in participants with PPCS will also improve quality of life, anxiety, depressive symptoms, cognition, posttraumatic stress, and function secondary to headaches. METHODS: A total of 44 adults (18-65 years old) with PPCS (>3 months to 5 years) will participate in a double-blind, sham-controlled, concealed allocation, randomized clinical trial. The participants will engage in either a 4-week rTMS treatment protocol or sham rTMS protocol (20 treatments). The left dorsolateral prefrontal cortex will be located through Montreal Neurologic Institute coordinates. The intensity of the rTMS treatment over the left dorsolateral prefrontal cortex will be 120% of resting motor threshold, with a frequency of 10 Hz, 10 trains of 60 pulses per train (total of 600 pulses), and intertrain interval of 45 seconds. Prior to starting the rTMS treatment, participant and injury characteristics, questionnaires (symptom burden, quality of life, depression, anxiety, cognition, and headache), and fNIRS assessment will be collected. Repeat questionnaires and fNIRS will occur immediately after rTMS treatment and at 1 month and 3 months post rTMS. Outcome parameters will be analyzed by a 2-way (treatment × time) mixed analysis of variance. RESULTS: As of May 6, 2021, 5 participants have been recruited for the study, and 3 have completed the rTMS protocol. The estimated completion date of the trial is May 2022. CONCLUSIONS: This trial will expand our knowledge of how rTMS can be used as a treatment option of PPCS and will explore the neuropathophysiological response of rTMS through fNIRS analysis. TRIAL REGISTRATION: ClinicalTrials.gov NCT04568369; https://clinicaltrials.gov/ct2/show/NCT04568369. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31308.

18.
J Cereb Blood Flow Metab ; 42(8): 1478-1492, 2022 08.
Article in English | MEDLINE | ID: mdl-35209741

ABSTRACT

Standard practices for quantifying neurovascular coupling (NVC) with transcranial Doppler ultrasound (TCD) require participants to complete one-to-ten repetitive trials. However, limited empirical evidence exists regarding how the number of trials completed influences the validity and reliability of temporally derived NVC metrics. Secondary analyses was performed on 60 young healthy participants (30 females/30 males) who completed eight cyclical eyes-closed (20-seconds), eyes-open (40-seconds) NVC trials, using the "Where's Waldo?" visual paradigm. TCD data was obtained in posterior and middle cerebral arteries (PCA and MCA, respectively). The within-day (n = 11) and between-day (n = 17) reliability were assessed at seven- and three-time points, respectively. Repeat testing from the reliability aims were also used for the concurrent validity analysis (n = 160). PCA metrics (i.e., baseline, peak, percent increase, and area-under-the-curve) demonstrated five trials produced excellent intraclass correlation coefficient (ICC) 95% confidence intervals for validity and within-day reliability (>0.900), whereas between-day reliability was good-to-excellent (>0.750). Likewise, 95% confidence intervals for coefficient of variation (CoV) measures ranged from acceptable (<20%) to excellent (<5%) with five-or-more trials. Employing fewer than five trials produced poor/unacceptable ICC and CoV metrics. Future NVC, TCD-based research should therefore have participants complete a minimum of five trials when quantifying the NVC response with TCD via a "Where's Waldo?" paradigm.


Subject(s)
Neurovascular Coupling , Cerebrovascular Circulation/physiology , Female , Humans , Male , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiology , Neurovascular Coupling/physiology , Reproducibility of Results , Ultrasonography, Doppler, Transcranial
19.
Neuroimage ; 250: 118935, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35091079

ABSTRACT

Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p ≤ 0.001), increased tissue oxygenation (6.4%, p ≤ 0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p ≤ 0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p ≤ 0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p ≤ 0.001) while the reduced state decreased (-34.4%, p ≤ 0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p ≤ 0.01) and cuprizone (-28.8%, p ≤ 0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p ≤ 0.01) and corpus callosum (-5.5%, p ≤ 0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cuprizone/pharmacology , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/metabolism , Magnetic Resonance Imaging/methods , Mitochondria/metabolism , Spectroscopy, Near-Infrared/methods , Animals , Cell Hypoxia , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Oxidative Stress , Remyelination/physiology , Spin Labels
20.
Sci Adv ; 7(45): eabh2148, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739319

ABSTRACT

Brain tumor­initiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2­containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1­ or PD-L1­blocking therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...