Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Sci Adv ; 10(23): eadm7273, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848365

ABSTRACT

By analyzing 15,000 samples from 348 mammalian species, we derive DNA methylation (DNAm) predictors of maximum life span (R = 0.89), gestation time (R = 0.96), and age at sexual maturity (R = 0.85). Our maximum life-span predictor indicates a potential innate longevity advantage for females over males in 17 mammalian species including humans. The DNAm maximum life-span predictions are not affected by caloric restriction or partial reprogramming. Genetic disruptions in the somatotropic axis such as growth hormone receptors have an impact on DNAm maximum life span only in select tissues. Cancer mortality rates show no correlation with our epigenetic estimates of life-history traits. The DNAm maximum life-span predictor does not detect variation in life span between individuals of the same species, such as between the breeds of dogs. Maximum life span is determined in part by an epigenetic signature that is an intrinsic species property and is distinct from the signatures that relate to individual mortality risk.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Longevity , Mammals , Animals , Longevity/genetics , Mammals/genetics , Female , Humans , Male , Life History Traits , Species Specificity
2.
Bioscience ; 74(3): 169-186, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38560620

ABSTRACT

The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens.

3.
Environ Res ; 249: 118229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38325785

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.


Subject(s)
Birds , Environmental Monitoring , Fluorocarbons , Animals , New Mexico , Fluorocarbons/analysis , Humans , Birds/metabolism , Mammals , Environmental Pollutants/analysis , Food Chain , Desert Climate , Environmental Exposure
4.
PLoS Negl Trop Dis ; 18(1): e0011672, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215158

ABSTRACT

BACKGROUND: Hantaviruses are negative-stranded RNA viruses that can sometimes cause severe disease in humans; however, they are maintained in mammalian host populations without causing harm. In Panama, sigmodontine rodents serve as hosts to transmissible hantaviruses. Due to natural and anthropogenic forces, these rodent populations are having increased contact with humans. METHODS: We extracted RNA and performed Illumina deep metatranscriptomic sequencing on Orthohantavirus seropositive museum tissues from rodents. We acquired sequence reads mapping to Choclo virus (CHOV, Orthohantavirus chocloense) from heart and kidney tissue of a two-decade old frozen museum sample from a Costa Rican pygmy rice rat (Oligoryzomys costaricensis) collected in Panama. Reads mapped to the CHOV reference were assembled and then validated by visualization of the mapped reads against the assembly. RESULTS: We recovered a 91% complete consensus sequence from a reference-guided assembly to CHOV with an average of 16X coverage. The S and M segments used in our phylogenetic analyses were nearly complete (98% and 99%, respectively). There were 1,199 ambiguous base calls of which 93% were present in the L segment. Our assembled genome varied 1.1% from the CHOV reference sequence resulting in eight nonsynonymous mutations. Further analysis of all publicly available partial S segment sequences support a clear relationship between CHOV clinical cases and O. costaricensis acquired strains. CONCLUSIONS: Viruses occurring at extremely low abundances can be recovered from deep metatranscriptomics of archival tissues housed in research natural history museum biorepositories. Our efforts resulted in the second CHOV genome publicly available. This genomic data is important for future surveillance and diagnostic tools as well as understanding the evolution and pathogenicity of CHOV.


Subject(s)
Orthohantavirus , Sigmodontinae , Animals , Rats , Humans , Phylogeny , Rodentia , Biological Specimen Banks
6.
Science ; 381(6658): eabq5693, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37561875

ABSTRACT

Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Mammals , Adult , Animals , Humans , Epigenome , Genome , Mammals/genetics , Phylogeny
7.
Viruses ; 15(6)2023 06 17.
Article in English | MEDLINE | ID: mdl-37376689

ABSTRACT

The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically sampled and archived rodents from >150 sites across Panama to establish a baseline understanding of the host and virus, producing a permanent archive of holistic specimens that we are now probing in greater detail. We summarize these collections and explore preliminary habitat/virus associations to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the central region of western Panama, consistent with the ecology of this agricultural commensal and the higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence in shrublands (11%). Host-pathogen distribution, transmission dynamics, genomic evolution, and habitat affinities can be derived from the preserved samples, which include frozen tissues, and now provide a foundation for expanded investigations of orthohantaviruses in Panama.


Subject(s)
Hantavirus Infections , Orthohantavirus , Animals , Rats , Humans , Animals, Wild , Seroepidemiologic Studies , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Sigmodontinae , Rodentia , Orthohantavirus/genetics , Disease Reservoirs
8.
Viruses ; 15(6)2023 06 19.
Article in English | MEDLINE | ID: mdl-37376694

ABSTRACT

Twenty years have passed since the emergence of hantavirus zoonosis in Panama at the beginning of this millennium. We provide an overview of epidemiological surveillance of hantavirus disease (hantavirus pulmonary syndrome and hantavirus fever) during the period 1999-2019 by including all reported and confirmed cases according to the case definition established by the health authority. Our findings reveal that hantavirus disease is a low-frequency disease, affecting primarily young people, with a relatively low case-fatality rate compared to other hantaviruses in the Americas (e.g., ANDV and SNV). It presents an annual variation with peaks every 4-5 years and an interannual variation influenced by agricultural activities. Hantavirus disease is endemic in about 27% of Panama, which corresponds to agroecological conditions that favor the population dynamics of the rodent host, Oligoryzomys costaricensis and the virus (Choclo orthohantavirus) responsible for hantavirus disease. However, this does not rule out the existence of other endemic areas to be characterized. Undoubtedly, decentralization of the laboratory test and dissemination of evidence-based surveillance guidelines and regulations have standardized and improved diagnosis, notification at the level of the primary care system, and management in intensive care units nationwide.


Subject(s)
Communicable Diseases , Hantavirus Infections , Hantavirus Pulmonary Syndrome , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Animals , Hantavirus Infections/epidemiology , Hantavirus Pulmonary Syndrome/epidemiology , Panama/epidemiology , Rodentia , Sigmodontinae
9.
Bioscience ; 72(5): 449-460, 2022 May.
Article in English | MEDLINE | ID: mdl-35592056

ABSTRACT

Zoos and natural history museums are both collections-based institutions with important missions in biodiversity research and education. Animals in zoos are a repository and living record of the world's biodiversity, whereas natural history museums are a permanent historical record of snapshots of biodiversity in time. Surprisingly, despite significant overlap in institutional missions, formal partnerships between these institution types are infrequent. Life history information, pedigrees, and medical records maintained at zoos should be seen as complementary to historical records of morphology, genetics, and distribution kept at museums. Through examining both institution types, we synthesize the benefits and challenges of cross-institutional exchanges and propose actions to increase the dialog between zoos and museums. With a growing recognition of the importance of collections to the advancement of scientific research and discovery, a transformational impact could be made with long-term investments in connecting the institutions that are caretakers of living and preserved animals.

10.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458412

ABSTRACT

Orthohantaviruses are negative-stranded RNA viruses with trisegmented genomes that can cause severe disease in humans and are carried by several host reservoirs throughout the world. Old World orthohantaviruses are primarily located throughout Europe and Asia, causing hemorrhagic fever with renal syndrome, and New World orthohantaviruses are found in North, Central, and South America, causing hantavirus cardiopulmonary syndrome (HCPS). In the United States, Sin Nombre orthohantavirus (SNV) is the primary cause of HCPS with a fatality rate of ~36%. The primary SNV host reservoir is thought to be the North American deer mouse, Peromyscus maniculatus. However, it has been shown that other species of Peromyscus can carry different orthohantaviruses. Few studies have systemically surveyed which orthohantaviruses may exist in wild-caught rodents or monitored spillover events into additional rodent reservoirs. A method for the rapid detection of orthohantaviruses is needed to screen large collections of rodent samples. Here, we report a pan-orthohantavirus, two-step reverse-transcription quantitative real-time PCR (RT-qPCR) tool designed to detect both Old and New World pathogenic orthohantavirus sequences of the S segment of the genome and validated them using plasmids and authentic viruses. We then performed a screening of wild-caught rodents and identified orthohantaviruses in lung tissue, and we confirmed the findings by Sanger sequencing. Furthermore, we identified new rodent reservoirs that have not been previously reported as orthohantavirus carriers. This novel tool can be used for the efficient and rapid detection of various orthohantaviruses, while uncovering potential new orthohantaviruses and host reservoirs that may otherwise go undetected.


Subject(s)
Hantavirus Infections , Hantavirus Pulmonary Syndrome , Orthohantavirus , Rodent Diseases , Sin Nombre virus , Animals , Disease Reservoirs , Orthohantavirus/genetics , Hantavirus Infections/diagnosis , Hantavirus Infections/epidemiology , Hantavirus Infections/veterinary , Peromyscus , Rodent Diseases/epidemiology , Rodentia
11.
J Virol ; 95(23): e0153421, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34549977

ABSTRACT

Sin Nombre orthohantavirus (SNV), a negative-sense, single-stranded RNA virus that is carried and transmitted by the North American deer mouse Peromyscus maniculatus, can cause infection in humans through inhalation of aerosolized excreta from infected rodents. This infection can lead to hantavirus cardiopulmonary syndrome (HCPS), which has an ∼36% case-fatality rate. We used reverse transcriptase quantitative PCR (RT-qPCR) to confirm SNV infection in a patient and identified SNV in lung tissues in wild-caught rodents from potential sites of exposure. Using viral whole-genome sequencing (WGS), we identified the likely site of transmission and discovered SNV in multiple rodent species not previously known to carry the virus. Here, we report, for the first time, the use of SNV WGS to pinpoint a likely site of human infection and identify SNV simultaneously in multiple rodent species in an area of known host-to-human transmission. These results will impact epidemiology and infection control for hantaviruses by tracing zoonotic transmission and investigating possible novel host reservoirs. IMPORTANCE Orthohantaviruses cause severe disease in humans and can be lethal in up to 40% of cases. Sin Nombre orthohantavirus (SNV) is the main cause of hantavirus disease in North America. In this study, we sequenced SNV from an infected patient and wild-caught rodents to trace the location of infection. We also discovered SNV in rodent species not previously known to carry SNV. These studies demonstrate for the first time the use of virus sequencing to trace the transmission of SNV and describe infection in novel rodent species.


Subject(s)
Disease Reservoirs/virology , Hantavirus Pulmonary Syndrome/transmission , Hantavirus Pulmonary Syndrome/veterinary , Hantavirus Pulmonary Syndrome/virology , Rodent Diseases/transmission , Rodent Diseases/virology , Rodentia/virology , Sin Nombre virus , Animals , Antibodies, Viral , Base Sequence , Female , Orthohantavirus/genetics , Hantavirus Infections/genetics , Hantavirus Infections/transmission , Hantavirus Infections/veterinary , Hantavirus Pulmonary Syndrome/epidemiology , Humans , Lung , Male , Mice , North America , Peromyscus/virology , Prevalence , RNA, Viral/genetics , Rodent Diseases/epidemiology , Sin Nombre virus/genetics , White People , Whole Genome Sequencing
12.
PLoS Pathog ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: mdl-34081744

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO's virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation.


Subject(s)
Biological Specimen Banks/organization & administration , Communicable Disease Control , Communicable Diseases, Emerging/prevention & control , Community Networks/organization & administration , Public Health Surveillance/methods , Animals , Animals, Wild , Biodiversity , Biological Specimen Banks/standards , Biological Specimen Banks/supply & distribution , Biological Specimen Banks/trends , COVID-19/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Community Networks/standards , Community Networks/supply & distribution , Community Networks/trends , Disaster Planning/methods , Disaster Planning/organization & administration , Disaster Planning/standards , Geography , Global Health/standards , Global Health/trends , Humans , Medical Countermeasures , Pandemics/prevention & control , Public Health , Risk Assessment , SARS-CoV-2/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control
13.
mBio ; 12(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33436435

ABSTRACT

Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.


Subject(s)
Biomedical Research/standards , Communicable Diseases/pathology , Natural History/standards , Zoonoses/pathology , Animals , Biodiversity , Biomedical Research/trends , COVID-19/pathology , COVID-19/virology , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/virology , Host-Pathogen Interactions , Humans , Museums/standards , SARS-CoV-2/classification , SARS-CoV-2/physiology , Specimen Handling , Zoonoses/microbiology , Zoonoses/parasitology , Zoonoses/virology
16.
J Mammal ; 100(2): 382-393, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31043762

ABSTRACT

Museum specimens play an increasingly important role in predicting the outcomes and revealing the consequences of anthropogenically driven disruption of the biosphere. As ecological communities respond to ongoing environmental change, host-parasite interactions are also altered. This shifting landscape of host-parasite associations creates opportunities for colonization of different hosts and emergence of new pathogens, with implications for wildlife conservation and management, public health, and other societal concerns. Integrated archives that document and preserve mammal specimens along with their communities of associated parasites and ancillary data provide a powerful resource for investigating, anticipating, and mitigating the epidemiological, ecological, and evolutionary impacts of environmental perturbation. Mammalogists who collect and archive mammal specimens have a unique opportunity to expand the scope and impact of their field work by collecting the parasites that are associated with their study organisms. We encourage mammalogists to embrace an integrated and holistic sampling paradigm and advocate for this to become standard practice for museum-based collecting. To this end, we provide a detailed, field-tested protocol to give mammalogists the tools to collect and preserve host and parasite materials that are of high quality and suitable for a range of potential downstream analyses (e.g., genetic, morphological). Finally, we also encourage increased global cooperation across taxonomic disciplines to build an integrated series of baselines and snapshots of the changing biosphere. Los especímenes de museo desempeñan un papel cada vez más importante tanto en la descripción de los resultados de la alteración antropogénica de la biosfera como en la predicción de sus consecuencias. Dado que las comunidades ecológicas responden al cambio ambiental, también se alteran las interacciones hospedador-parásito. Este panorama cambiante de asociaciones hospedador-parásito crea oportunidades para la colonización de diferentes hospedadores y para la aparición de nuevos patógenos, con implicancias en la conservación y manejo de la vida silvestre, la salud pública y otras preocupaciones de importancia para la sociedad. Archivos integrados que documentan y preservan especímenes de mamíferos junto con sus comunidades de parásitos y datos asociados, proporcionan un fuerte recurso para investigar, anticipar y mitigar los impactos epidemiológicos, ecológicos y evolutivos de las perturbaciones ambientales. Los mastozoólogos que recolectan y archivan muestras de mamíferos, tienen una oportunidad única de ampliar el alcance e impacto de su trabajo de campo mediante la recolección de los parásitos que están asociados con los organismos que estudian. Alentamos a los mastozoólogos a adoptar un paradigma de muestreo integrado y holístico y abogamos para que esto se convierta en una práctica estándarizada de la obtención de muestras para museos. Con este objetivo, proporcionamos un protocolo detallado y probado en el campo para brindar a los mastozoólogos las herramientas para recolectar y preservar materiales de parásitos y hospedadores de alta calidad y adecuados para una gran variedad de análisis subsecuentes (e.g., genéticos, morfológicos, etc.). Finalmente, también abogamos por una mayor cooperación global entre las diversas disciplinas taxonómicas para construir una serie integrada de líneas de base y registros actuales de nuestra cambiante biosfera.

17.
J Mammal ; 99(6): 1307-1322, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30538340

ABSTRACT

As a periodic assessment of the mammal collection resource, the Systematic Collections Committee (SCC) of the American Society of Mammalogists undertakes decadal surveys of the collections held in the Western Hemisphere. The SCC surveyed 429 collections and compiled a directory of 395 active collections containing 5,275,155 catalogued specimens. Over the past decade, 43 collections have been lost or transferred and 38 new or unsurveyed collections were added. Growth in number of total specimens, expansion of genomic resource collections, and substantial gains in digitization and web accessibility were documented, as well as slight shifts in proportional representation of taxonomic groups owing to increasingly balanced geographic representation of collections relative to previous surveys. While we find the overall health of Western Hemisphere collections to be adequate in some areas, gaps in spatial and temporal coverage and clear threats to long-term growth and vitality of these resources have also been identified. Major expansion of the collective mammal collection resource along with a recommitment to appropriate levels of funding will be required to meet the challenges ahead for mammalogists and other users, and to ensure samples are broad and varied enough that unanticipated future needs can be powerfully addressed.


Aproximadamente cada 10 años, el Comité de Colecciones Sistemáticas (CCS) de la Sociedad Americana de Mastozoologia, evalúa el estado de las colecciones mastozoológicas del hemisferio occidental. En el último censo, el CCS encuestó un total de 429 colecciones y compiló un directorio de 395 colecciones activas que contenían 5,275,155 especímenes catalogados. En comparación con el censo previo, durante la última década 43 colecciones se han cerrado o han sido absorbidas, pero se agregaron al censo 38 nuevas colecciones. Se documentó un incremento en el número total de especímenes, la expansión de la disponibilidad de colecciones de recursos genómicos, además de avances substanciales en digitalización y accesibilidad a la web. También, se detectaron cambios en las proporciones de grupos taxonómicos debido a la representación geográfica cada vez más equilibrada de las colecciones en comparación con encuestas anteriores. Si bien consideramos que las colecciones del hemisferio occidental estan en buen estado en algunas áreas, también identificamos brechas claras en la cobertura espacial y temporal, así como amenazas al crecimiento y vitalidad de estos recursos a largo plazo. Un crecimiento substancial, acompañado de compromisos de adecuado financiamiento, serán necesarios para asegurar que las colecciones incluyan muestras lo suficientemente amplias y variadas como para permitir a mastozoologos y otros científicos abordar las necesidades, muchas de ellas imprevistas, que traerá el futuro.

19.
J Mammal ; 97(1): 287-297, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26989266

ABSTRACT

Specimens and associated data in natural history collections (NHCs) foster substantial scientific progress. In this paper, we explore recent contributions of NHCs to the study of systematics and biogeography, genomics, morphology, stable isotope ecology, and parasites and pathogens of mammals. To begin to assess the magnitude and scope of these contributions, we analyzed publications in the Journal of Mammalogy over the last decade, as well as recent research supported by a single university mammal collection (Museum of Southwestern Biology, Division of Mammals). Using these datasets, we also identify weak links that may be hindering the development of crucial NHC infrastructure. Maintaining the vitality and growth of this foundation of mammalogy depends on broader engagement and support from across the scientific community and is both an ethical and scientific imperative given the rapidly changing environmental conditions on our planet.

SELECTION OF CITATIONS
SEARCH DETAIL
...