Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Cells ; 13(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39329736

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is a complex cellular process that allows cells to change their phenotype from epithelial to mesenchymal-like. Type 3 EMT occurs during cancer progression. The aim of this study was to investigate the role of RNA-binding motif single-stranded interacting protein 3 (RBMS 3) in the process of EMT. To investigate the impact of RBMS 3 on EMT, we performed immunohistochemical (IHC) reactions on archived paraffin blocks of invasive ductal breast carcinoma (n = 449), allowing us to analyze the correlation in expression between RBMS 3 and common markers of EMT. The IHC results confirmed the association of RBMS 3 with EMT markers. Furthermore, we performed an in vitro study using cellular models of triple negative and HER-2-enriched breast cancer with the overexpression and silencing of RBMS 3. RT-qPCR and Western blot methods were used to detect changes at both the mRNA and protein levels. An invasion assay and confocal microscopy were used to study the migratory potential of cells depending on the RBMS 3 expression. The studies conducted suggest that RBMS 3 may potentially act as an EMT-promoting agent in the most aggressive subtype of breast cancer, triple negative breast cancer (TNBC), but as an EMT suppressor in the HER-2-enriched subtype. The results of this study indicate the complex role of RBMS 3 in regulating the EMT process and present it as a future potential target for personalized therapies and a diagnostic marker in breast cancer.


Subject(s)
Epithelial-Mesenchymal Transition , RNA-Binding Proteins , Triple Negative Breast Neoplasms , Epithelial-Mesenchymal Transition/genetics , Humans , Female , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Middle Aged , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Disease Progression
2.
Cells ; 13(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39329748

ABSTRACT

Massage is one of the oldest forms of therapy practiced since ancient times. Nowadays, it is used in sports practice, recovery from injury, or supportive therapy for various conditions. The practice of massage uses a variety of instruments that facilitate massaging while relieving the stress on the masseur. One of them is a foam roller. Although roller massage is widely used, there are still no scientific studies describing the biological mechanisms of its effects on the body. The purpose of our study was to analyze the effect of roller massage on BDNF levels in men undergoing self-massage 4x/week/7 weeks. The control group consisted of men who did not perform self-massage. Before the test and after the first, third, fifth, and seventh weeks of self-massage, the study participants' blood was drawn, the serum BDNF was determined, and the results were subjected to analysis of variance by ANOVA test. After the first week of self-massage, an increase in BDNF concentration was observed in the self-massage group compared to the control group (p = 0.023). Similarly, changes were observed in week five (p = 0.044) and week seven (p = 0.046). In the massaged group, BDNF concentrations were significantly higher after the first week of self-massage compared to baseline. In the third week of the study, BDNF decreased to a value comparable to the baseline study, then increased significantly in the fifth and seventh weeks compared to the value recorded in the third week (p = 0.049 and p = 0.029). It was significantly higher in week seven compared to week five (p = 0.03). Higher concentrations of BDNF in subjects undergoing roller self-massage may be one of the biological mechanisms justifying the therapeutic effects of massage in both sports and clinical practice. Studies analyzing the stimulation of BDNF synthesis through various massage techniques should be performed on a larger group of healthy individuals, patients after trauma of multiple origins, and sick people with indications for therapeutic massage.


Subject(s)
Brain-Derived Neurotrophic Factor , Massage , Humans , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , Massage/methods , Male , Adult , Young Adult
3.
Cells ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272978

ABSTRACT

The role of periostin (POSTN) in remodeling the microenvironment surrounding solid tumors and its effect on the tumor cells in non-small-cell lung carcinoma (NSCLC) have not yet been fully understood. The aim of this study was to determine the relationship between POSTN expression (in tumor cells [NSCLC cells] and the tumor stroma) and pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and microvascular density (MVD) in NSCLC. In addition, these associations were analyzed in individual histological subtypes of NSCLC (SCC, AC, and LCC) and their correlations with clinicopathological factors and prognosis were examined. Immunohistochemistry using tissue microarrays (TMAs) was used to assess the expression of POSTN (in tumor cells and cancer-associated fibroblasts [CAFs]) and the pro-angiogenic factors. A significant positive correlation was found between the expression of POSTN (in cancer cells/CAFs) and the expression of the analyzed pro-angiogenic factors (CD31, CD34, CD105, and VEGF-A) and MVD in the entire population of patients with NSCLC and individual histological subtypes (AC, SCC). In addition, this study found that POSTN expression (in tumor cells/CAFs) increased with tumor size (pT), histopathological grade (G), and lymph-node involvement (pN). In addition, a high expression of POSTN (in tumor cells and CAFs) was associated with shorter survival among patients with NSCLC. In conclusion, a high expression of POSTN (in cancer cells and CAFs) may be crucial for angiogenesis and NSCLC progression and can constitute an independent prognostic factor for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Adhesion Molecules , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Adhesion Molecules/metabolism , Female , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Male , Middle Aged , Aged , Neovascularization, Pathologic/metabolism , Prognosis , Angiogenesis Inducing Agents/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Vascular Endothelial Growth Factor A/metabolism , Periostin
4.
In Vivo ; 38(5): 2126-2133, 2024.
Article in English | MEDLINE | ID: mdl-39187335

ABSTRACT

BACKGROUND/AIM: Cardiovascular diseases (CVD) are the leading cause of death worldwide. In 2019, 523 million people were diagnosed with CVD, with 18.6 million deaths. Improved treatment and diagnostics could reduce CVD's impact. Irisin (Ir) is crucial for heart function and may be a biomarker for heart attack. Ir is a glycoprotein with sugar residues attached to its protein structure. This glycosylation affects Ir stability, solubility, and receptor interactions on target cells. Its secondary structure includes a fibronectin type III domain, essential for its biological functions. Ir helps cardiomyocytes to respond to hypoxia and protects mitochondria. The aim of the study was to determine the FNDC5 gene expression level and the Ir level in HL-1 cardiomyocytes subjected to hypoxia. MATERIALS AND METHODS: We examined the effect of hypoxia on the expression levels of the FNDC5 gene and those of Ir in mouse cardiomyocytes of the HL-1 cell line. Real-time PCR (RT-PCR) was used to estimate the expression levels of the FNDC5 gene. Western blot and immunofluorescence methods were used to analyze the Ir protein levels. RESULTS: Analyses showed an increased Ir level in HL-1 cardiomyocytes in response to hypoxia. This is the first study to confirm the presence of Ir in HL-1 cells. CONCLUSION: The observed increase in Ir expression in murine cardiomyocytes is associated with the hypoxic environment and can be potentially used to diagnose hypoxia and CVD.


Subject(s)
Cell Hypoxia , Fibronectins , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Fibronectins/metabolism , Fibronectins/genetics , Mice , Animals , Cell Line , Gene Expression Regulation , Gene Expression
5.
Front Oncol ; 14: 1418005, 2024.
Article in English | MEDLINE | ID: mdl-39188680

ABSTRACT

Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.

6.
Biomed Pharmacother ; 178: 116990, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024839

ABSTRACT

Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.


Subject(s)
Dental Pulp , Regenerative Medicine , Stem Cells , Humans , Dental Pulp/cytology , Regenerative Medicine/methods , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cell Differentiation , Stem Cell Transplantation/methods , RNA, Untranslated/genetics
7.
Cancer Med ; 13(14): e7390, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031113

ABSTRACT

BACKGROUND: The tetraspanin (TSPAN) family comprises 33 membrane receptors involved in various physiological processes in humans. Tetrasapanins are surface proteins expressed in cells of various organisms. They are localised to the cell membrane by four transmembrane domains (TM4SF). These domains bind several cell surface receptors and signalling proteins to tetraspanin-enriched lipid microdomains (TERM or TEM). Tetraspanins play a critical role in anchoring many proteins. They also act as a scaffold for cell signalling proteins. AIM: To summarise how tetraspanins 6, 7 and 8 contribute to the carcinogenesis process in different types of cancer. METHODS: To provide a comprehensive review of the role of tetraspanins 6, 7 and 8 in cancer biology, we conducted a thorough search in PubMed, Embase and performed manual search of reference list to collect and extract data. DISCUSSION: The assembly of tetraspanins covers an area of approximately 100-400 nm. Tetraspanins are involved in various biological processes such as membrane fusion, aggregation, proliferation, adhesion, cell migration and differentiation. They can also regulate integrins, cell surface receptors and signalling molecules. Tetraspanins form direct bonds with proteins and other members of the tetraspanin family, forming a hierarchical network of interactions and are thought to be involved in cell and membrane compartmentalisation. Tetraspanins have been implicated in cancer progression and have been shown to have multiple binding partners and to promote cancer progression and metastasis. Clinical studies have documented a correlation between the level of tetraspanin expression and the prediction of cancer progression, including breast and lung cancer. CONCLUSIONS: Tetraspanins are understudied in almost all cell types and their functions are not clearly defined. Fortunately, it has been possible to identify the basic mechanisms underlying the biological role of these proteins. Therefore, the purpose of this review is to describe the roles of tetraspanins 6, 7 and 8.


Subject(s)
Neoplasms , Tetraspanins , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology , Nerve Tissue Proteins , Signal Transduction , Tetraspanins/metabolism
8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000215

ABSTRACT

The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.


Subject(s)
Epithelial Cells , Transcriptome , Animals , Female , Swine , Epithelial Cells/metabolism , Epithelial Cells/cytology , Gene Expression Profiling , Cells, Cultured , Oviducts/metabolism , Oviducts/cytology , Cell Culture Techniques/methods , Gene Expression Regulation , Fallopian Tubes/metabolism , Fallopian Tubes/cytology
9.
Am J Cancer Res ; 14(6): 3036-3058, 2024.
Article in English | MEDLINE | ID: mdl-39005669

ABSTRACT

Cancer is the leading cause of death worldwide. The World Health Organization (WHO) estimates that 10 million fatalities occurred in 2023. Breast cancer (BC) ranked first among malignancies with 2.26 million cases, lung cancer (LC) second with 2.21 million cases, and colon and rectum cancers (CC, CRC) third with 1.93 million cases. These results highlight the importance of investigating novel cancer prognoses and anti-cancer markers. In this study, we investigated the potential effects of alpha-2 macroglobulin and its receptor, LRP1, on the outcomes of breast, lung, and colorectal malignancies. Immunohistochemical staining was used to analyze the expression patterns of A2M and LRP1 in 545 cases of invasive ductal breast carcinoma (IDC) and 51 cases of mastopathies/fibrocystic breast disease (FBD); 256 cases of non-small cell lung carcinomas (NSCLCs) and 45 cases of non-malignant lung tissue (NMLT); and 108 cases of CRC and 25 cases of non-malignant colorectal tissue (NMCT). A2M and LRP1 expression levels were also investigated in breast (MCF-7, BT-474, SK-BR-3, T47D, MDA-MB-231, and MDA-MB-231/BO2), lung (NCI-H1703, NCI-H522, and A549), and colon (LS 180, Caco-2, HT-29, and LoVo) cancer cell lines. Based on our findings, A2M and LRP1 exhibited various expression patterns in the examined malignancies, which were related to one another. Additionally, the stroma of lung and colorectal cancer has increased levels of A2M/LRP1 areas, which explains the significance of the stroma in the development and maintenance of tumor homeostasis. A2M expression was shown to be downregulated in all types of malignancies under study and was positively linked with an increase in cell line aggressiveness. Although more invasive cells had higher levels of A2M expression, an IHC analysis showed the opposite results. This might be because exogenous alpha-2-macroglobulin is present, which has an inhibitory effect on several cancerous enzymes and receptor-dependent signaling pathways. Additionally, siRNA-induced suppression of the transcripts for A2M and LRPP1 revealed their connection, which provides fresh information on the function of the LRP1 receptor in A2M recurrence in cancer. Further studies on different forms of cancer may corroborate the fact that both A2M and LRP1 have high potential as innovative therapeutic agents.

10.
Aging Dis ; 2024 06 14.
Article in English | MEDLINE | ID: mdl-38913049

ABSTRACT

As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.

11.
J Clin Med ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892988

ABSTRACT

Background: The rising incidence of Basal Cell Carcinoma (BCC), especially among individuals with significant sun exposure, underscores the need for effective and minimally invasive treatment alternatives. Traditional surgical approaches, while effective, often result in notable cosmetic and functional limitations, particularly for lesions located on the face. This study explores High-Intensity Focused Ultrasound (HIFU) as a promising, non-invasive treatment option that aims to overcome these challenges, potentially revolutionizing BCC treatment by offering a balance between efficacy and cosmetic outcomes. Methods: Our investigation enrolled 8 patients, presenting a total of 15 BCC lesions, treated with a 20 MHz HIFU device. The selection of treatment parameters was precise, utilizing probe depths from 0.8 mm to 2.3 mm and energy settings ranging from 0.7 to 1.3 Joules (J) per pulse, determined by the lesion's infiltration depth as assessed via pre-procedure ultrasonography. A key component of our methodology included dermatoscopic monitoring, which allowed for detailed observation of the lesions' response to treatment over time. Patient-reported outcomes and satisfaction levels were systematically recorded, providing insights into the comparative advantages of HIFU. Results: Initial responses after HIFU treatment included whitening and edema, indicative of successful lesion ablation. Early post-treatment observations revealed minimal discomfort and quick recovery, with crust formation resolving within two weeks for most lesions. Over a period of three to six months, patients reported significant improvement, with lesions becoming lighter and blending into the surrounding skin, demonstrating effective and aesthetically pleasing outcomes. Patient satisfaction surveys conducted six months post-treatment revealed high levels of satisfaction, with 75% of participants reporting very high satisfaction due to minimal scarring and the non-invasive nature of the procedure. No recurrences of BCC were noted, attesting to the efficacy of HIFU as a treatment option. Conclusions: The findings from this study confirm that based on dermoscopy analysis, HIFU is a highly effective and patient-preferred non-invasive treatment modality for Basal Cell Carcinoma. HIFU offers a promising alternative to traditional surgical and non-surgical treatments, reducing the cosmetic and functional repercussions associated with BCC management. Given its efficacy, safety, and favorable patient satisfaction scores, HIFU warrants further investigation and consideration for broader clinical application in the treatment of BCC, potentially setting a new standard in dermatologic oncology care. This work represents a pilot study that is the first to describe the use of HIFU in the treatment of BCC.

12.
Theriogenology ; 224: 163-173, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776704

ABSTRACT

Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.


Subject(s)
Cryopreservation , Ovary , Vitrification , Animals , Cats , Female , Cryopreservation/veterinary , Cryopreservation/methods , Temperature
13.
Sci Rep ; 14(1): 12546, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822068

ABSTRACT

Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.


Subject(s)
Exocytosis , Melanoma-Specific Antigens , Melanoma , Humans , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Melanoma/immunology , Cell Line, Tumor , Melanoma-Specific Antigens/metabolism , Melanoma-Specific Antigens/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics
14.
Cell Biosci ; 14(1): 30, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444042

ABSTRACT

Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.

15.
Nanomaterials (Basel) ; 14(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38535679

ABSTRACT

Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.

16.
Cancers (Basel) ; 16(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38539459

ABSTRACT

This study investigates the impact of bisphosphonate therapy on the stomatognathic system in 80 patients with cancer of the breast and prostate with bone metastases. Bisphosphonates are integral for managing skeletal complications in these malignancies but are associated with bisphosphonate-related osteonecrosis of the jaw (BRONJ), affecting 0.8-18.5% of patients. BRONJ manifests with pain, neuropathy, tissue swelling, mucosal ulceration, tooth mobility, and abscesses, yet its pathogenesis remains elusive, complicating risk prediction. The research employed comprehensive dental and radiological evaluations. Dental status was assessed using DMFT and OHI-S indices, Eichner's classification, and clinical periodontal measurements like the pocket depth (PD), clinical attachment loss (CAL), and modified Sulcus Bleeding Index (mSBI). A radiological analysis included panoramic X-rays for radiomorphometric measurements and TMJ lateral radiographs. Results indicated a significant decline in oral hygiene in patients with cancer after bisphosphonate therapy, marked by increased DMFT and OHI-S scores. Periodontal health also showed deterioration, with increased PD and CAL readings. The incidence of BRONJ symptoms was noted, although exact figures are not quantified in this abstract. The study also revealed changes in radiomorphometric parameters, suggesting bisphosphonates' impact on bone density and structure. No substantial alterations were observed in TMJ function, indicating a need for extended observation to understand bisphosphonates' long-term effects on the stomatognathic system. These findings highlight the importance of continuous dental monitoring and prophylaxis in patients undergoing bisphosphonate therapy. Implementing meticulous oral care protocols is essential for mitigating BRONJ risk and managing the complex oral health challenges in patients with cancer.

17.
Adv Clin Exp Med ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506416

ABSTRACT

BACKGROUND: Recent studies have indicated that the skin lymphatic system and interstitium may play a role in the pathophysiology of arterial hypertension (AH). OBJECTIVES: We aimed to determine whether the set of pathway parameters described previously in rodents would allow for the distinction between hypertensive and normotensive patients. MATERIAL AND METHODS: Molecular and histopathological parameters from the skin and blood of patients with AH (AH group, n = 53), resistant AH (RAH group, n = 32) and control (C group, n = 45) were used, and a statistical multivariate bootstrap methodology combining partial least squares-discriminant analysis (PLS-DA) and selectivity ratio (SR) were applied. RESULTS: The C vs RAH model presented the best prediction performance (AUC test = 0.90) and had a sensitivity and specificity of 73.68% and 83.33%, respectively. However, the parameters selected for the C vs AH group model were the most important for the pathway described in the rodent model, i.e., greater density of the skin lymphatic vessels (D2-40 expression) and greater number of macrophages (CD68 expression), higher expression of the messenger ribonucleic acid (mRNA) of nuclear factor of activated T cells 5 (NFAT5), vascular endothelial growth factor C (VEGFC) and podoplanin (PDPN) in the skin, greater concentration of hyaluronic acid (HA) in the skin, and lower serum concentration of VEGF-C. CONCLUSIONS: Our study suggests that the NFAT5/VEGF-C/lymphangiogenesis pathway, previously described in rodent studies, may also be present in human HA. Further experiments are needed to confirm our findings.

18.
Front Oncol ; 14: 1332362, 2024.
Article in English | MEDLINE | ID: mdl-38347840

ABSTRACT

This case study documents an extraordinary disease progression in a 70-year-old patient diagnosed with metastatic melanoma. The patient's condition advanced to an unusual manifestation characterized by generalized melanosis and melanuria, a rare and foreboding complication of metastatic melanoma. The clinical presentation involved rapid-onset skin darkening, primarily affecting the face and torso, along with darkened urine, marking the onset of melanuria. Despite extensive diagnostic evaluations, including abdominal ultrasound, neck ultrasound, thoracic CT scans, and endoscopic examinations, the exact metastatic sites remained elusive, demonstrating the diagnostic challenges associated with this condition. Laboratory tests revealed abnormal hematological and biochemical markers, along with elevated S100 protein levels, indicating disease progression. The patient underwent a surgical skin biopsy that confirmed the diagnosis of metastatic melanoma, leading to a multidisciplinary approach to treatment. Following this, the patient-initiated chemotherapy with dacarbazine (DTIC). Regrettably, this was necessitated by the absence of reimbursement for BRAF and MEK inhibitors as well as immunotherapy, and it subsequently led to rapid disease progression and a decline in the patient's clinical condition. The patient's condition further complicated with erysipelas and increased distress, ultimately leading to their unfortunate demise. This case highlights the aggressive nature of generalized melanosis, characterized by a rapid clinical course, substantial pigmentation, and limited response to conventional chemotherapy. Importantly, the patient had a BRAF mutation, emphasizing the urgency of exploring alternative treatment strategies. Patients with a BRAF mutation are excellent candidates for BRAF and MEK inhibitor treatment, potentially allowing them to extend their lifespan if this therapy were available. The challenges encountered in diagnosing, managing, and treating this aggressive form of metastatic melanoma underline the need for early detection, tailored therapeutic approaches, and ongoing research efforts to improve patient outcomes in such cases.

19.
Cells ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334666

ABSTRACT

A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.


Subject(s)
Aortic Aneurysm, Abdominal , Male , Humans , Female , Aged , Aortic Aneurysm, Abdominal/metabolism , Aorta/metabolism , Cytokines/metabolism , Phenotype , Apoptosis/genetics
20.
Cells ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38334669

ABSTRACT

Disorders of cardiomyocyte metabolism play a crucial role in many cardiovascular diseases, such as myocardial infarction, heart failure and ischemia-reperfusion injury. In myocardial infarction, cardiomyocyte metabolism is regulated by mitochondrial changes and biogenesis, which allows energy homeostasis. There are many proteins in cells that regulate and control metabolic processes. One of them is irisin (Ir), which is released from the transmembrane protein FNDC5. Initial studies indicated that Ir is a myokine secreted mainly by skeletal muscles. Further studies showed that Ir was also present in various tissues. However, its highest levels were observed in cardiomyocytes. Ir is responsible for many processes, including the conversion of white adipose tissue (WAT) to brown adipose tissue (BAT) by increasing the expression of thermogenin (UCP1). In addition, Ir affects mitochondrial biogenesis. Therefore, the levels of FNDC5/Ir in the blood and myocardium may be important in cardiovascular disease. This review discusses the current knowledge about the role of FNDC5/Ir in cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Myocardial Infarction , Humans , Fibronectins/metabolism , Cardiovascular Diseases/metabolism , Adipose Tissue, White/metabolism , Muscle, Skeletal/metabolism , Transcription Factors/metabolism , Myocardial Infarction/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL