ABSTRACT
A total of 3,860 accessions from the global in trust clonal potato germplasm collection w3ere genotyped with the Illumina Infinium SolCAP V2 12K potato SNP array to evaluate genetic diversity and population structure within the potato germplasm collection. Diploid, triploid, tetraploid, and pentaploid accessions were included representing the cultivated potato taxa. Heterozygosity ranged from 9.7% to 66.6% increasing with ploidy level with an average heterozygosity of 33.5%. Identity, relatedness, and ancestry were evaluated using hierarchal clustering and model-based Bayesian admixture analyses. Errors in genetic identity were revealed in a side-by-side comparison of in vitro clonal material with the original mother plants revealing mistakes putatively occurring during decades of processing and handling. A phylogeny was constructed to evaluate inter- and intraspecific relationships which together with a STRUCTURE analysis supported both commonly used treatments of potato taxonomy. Accessions generally clustered based on taxonomic and ploidy classifications with some exceptions but did not consistently cluster by geographic origin. STRUCTURE analysis identified putative hybrids and suggested six genetic clusters in the cultivated potato collection with extensive gene flow occurring among the potato populations, implying most populations readily shared alleles and that introgression is common in potato. Solanum tuberosum subsp. andigena (ADG) and S. curtilobum (CUR) displayed significant admixture. ADG likely has extensive admixture due to its broad geographic distribution. Solanum phureja (PHU), Solanum chaucha (CHA)/Solanum stenotomum subsp. stenotomum (STN), and Solanum tuberosum subsp. tuberosum (TBR) populations had less admixture from an accession/population perspective relative to the species evaluated. A core and mini core subset from the genebank material was also constructed. SNP genotyping was also carried out on 745 accessions from the Seed Savers potato collection which confirmed no genetic duplication between the two potato collections, suggesting that the collections hold very different genetic resources of potato. The Infinium SNP Potato Array is a powerful tool that can provide diversity assessments, fingerprint genebank accessions for quality management programs, use in research and breeding, and provide insights into the complex genetic structure and hybrid origin of the diversity present in potato genetic resource collections.
ABSTRACT
This breeding project, initiated at the United States Potato Genebank (USPG) in collaboration with Peruvian partners Instituto Nacional de Innovacion Agraria (INIA), International Potato Center, Peru (CIP), and local farmers, sought to enhance cold hardiness and frost tolerance in native potato cultivars in Peru. The Andes and Altiplano are often affected by frost, which causes significant reduction in yield; creating varieties with superior resilience is a critical undertaking. The goal was to transfer outstanding non-acclimated cold tolerance and acclimation capacity found in wild potato species Solanum commersonii (cmm). Breeding families segregating for cold hardiness were created using (a) a somatic hybrid cmm + haploid Solanum tuberosum (tbr) (cv. Superior, US variety from Wisconsin) as male and (b) seven cultivars native to Peru of the species S. tuberosum sbsp. andigenum (adg) as females. All plant materials were part of the USPG germplasm collection. Sexual seeds of each family were sent to Peru for evaluations under the natural conditions of the Andean highlands and Altiplano. The plants were assessed for their response to frost, and genotypes showing exceptional tolerance were selected. Plants were also evaluated for good tuber traits and yield. Initial planting involving ~2,500 seedlings in five locations resulted in selecting 58 genotypes with exceptional frost tolerance, good recovery capacity after frost, and good tuber traits. Over the years, evaluations continued and were expanded to replicated field trials in the harsher conditions of the Altiplano (Puno). All trials confirmed consistency of frost tolerance over time and location, tuber quality, and yield. After 8 years, two advanced clones were considered for cultivar release because of their exceptional frost tolerance and superior field productivity that outyielded many of the established cultivars in the region. In November 2018, a new native cultivar named Wiñay, a Quechua word meaning "to grow" was released in Peru. In 2022, a second cultivar followed with the name Llapanchispaq (meaning "for all of us"). This project evidenced that a multinational and all-encompassing approach to deploy valuable genetic diversity can work and deliver effective results. This is even more significant when outcomes can promote food security and sustainability in very vulnerable regions of the world.
ABSTRACT
Leptospirosis is an infectious illness encountered mostly in tropical climates and has been of particular concern in Haiti after natural disasters. Heavy rainfalls and natural disasters in combination with scarce resources to control and identify clusters of infections make certain populations and countries vulnerable. In some cases, patients who contract this disease may need air medical transport to hospitals that have a higher level of care. In this case report, a trio of cases is highlighted from an outbreak that required air transport to transfer patients to a facility with the availability of an intensive care unit. The goal of highlighting these cases is to increase the awareness of physicians and air transport providers to the manifestation and treatment of this disease and to provide pearls to stabilize patients during transport.
Subject(s)
Air Ambulances , Leptospirosis , Humans , Disease Outbreaks , Haiti/epidemiology , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Leptospirosis/therapyABSTRACT
Crop wild relatives (CWRs) are important sources of novel genes, due to their high variability of response to biotic and abiotic stresses, which can be invaluable for crop genetic improvement programs. Recent studies have shown that CWRs are threatened by several factors, including changes in land-use and climate change. A large proportion of CWRs are underrepresented in genebanks, making it necessary to take action to ensure their long-term ex situ conservation. With this aim, 18 targeted collecting trips were conducted during 2017/2018 in the center of origin of potato (Solanum tuberosum L.), targeting 17 diverse ecological regions of Peru. This was the first comprehensive wild potato collection in Peru in at least 20 years and encompassed most of the unique habitats of potato CWRs in the country. A total of 322 wild potato accessions were collected as seed, tubers, and whole plants for ex situ storage and conservation. They belonged to 36 wild potato species including one accession of S. ayacuchense that was not conserved previously in any genebank. Most accessions required regeneration in the greenhouse prior to long-term conservation as seed. The collected accessions help reduce genetic gaps in ex situ conserved germplasm and will allow further research questions on potato genetic improvement and conservation strategies to be addressed. These potato CWRs are available by request for research, training, and breeding purposes under the terms of the International Treaty for Plant Genetic Resources for Food and Agriculture (ITPGRFA) from the Instituto Nacional de Innovacion Agraria (INIA) and the International Potato Center (CIP) in Lima-Peru.
ABSTRACT
Purpose of Review: Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings: Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary: Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information: The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
ABSTRACT
Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.
Subject(s)
Crops, Agricultural , Plant Breeding , Crops, Agricultural/genetics , Asia, Eastern , South America , Triticum/geneticsABSTRACT
Late blight (LB) caused by the oomycete Phytophthora infestans is one of the most important biotic constraints for potato production worldwide. This study assessed 508 accessions (79 wild potato species and 429 landraces from a cultivated core collection) held at the International Potato Center genebank for resistance to LB. One P. infestans isolate belonging to the EC-1 lineage, which is currently the predominant type of P. infestans in Peru, Ecuador, and Colombia, was used in whole plant assays under greenhouse conditions. Novel sources of resistance to LB were found in accessions of Solanum albornozii, S. andreanum, S. lesteri, S. longiconicum, S. morelliforme, S. stenophyllidium, S. mochiquense, S. cajamarquense, and S. huancabambense. All of these species are endemic to South America and thus could provide novel sources of resistance for potato breeding programs. We found that the level of resistance to LB in wild species and potato landraces cannot be predicted from altitude and bioclimatic variables of the locations where the accessions were collected. The high percentage (73%) of potato landraces susceptible to LB in our study suggests the importance of implementing disease control measures, including planting susceptible genotypes in less humid areas and seasons or switching to genotypes identified as resistant. In addition, this study points out a high risk of genetic erosion in potato biodiversity at high altitudes of the Andes due to susceptibility to LB in the native landraces, which has been exacerbated by climatic change that favors the development of LB in those regions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Subject(s)
Phytophthora infestans , Solanum tuberosum , Solanum , Phytophthora infestans/genetics , Plant Breeding , Plant Diseases/genetics , Solanum tuberosum/geneticsABSTRACT
Purpose of Review: Review comprehensive data on rates of toxoplasmosis in Panama and Colombia. Recent Findings: Samples and data sets from Panama and Colombia, that facilitated estimates regarding seroprevalence of antibodies to Toxoplasma and risk factors, were reviewed. Summary: Screening maps, seroprevalence maps, and risk factor mathematical models were devised based on these data. Studies in Ciudad de Panamá estimated seroprevalence at between 22 and 44%. Consistent relationships were found between higher prevalence rates and factors such as poverty and proximity to water sources. Prenatal screening rates for anti-Toxoplasma antibodies were variable, despite existence of a screening law. Heat maps showed a correlation between proximity to bodies of water and overall Toxoplasma seroprevalence. Spatial epidemiological maps and mathematical models identify specific regions that could most benefit from comprehensive, preventive healthcare campaigns related to congenital toxoplasmosis and Toxoplasma infection.
ABSTRACT
Purpose of Review: Review work to create and evaluate educational materials that could serve as a primary prevention strategy to help both providers and patients in Panama, Colombia, and the USA reduce disease burden of Toxoplasma infections. Recent Findings: Educational programs had not been evaluated for efficacy in Panama, USA, or Colombia. Summary: Educational programs for high school students, pregnant women, medical students and professionals, scientists, and lay personnel were created. In most settings, short-term effects were evaluated. In Panama, Colombia, and USA, all materials showed short-term utility in transmitting information to learners. These educational materials can serve as a component of larger public health programs to lower disease burden from congenital toxoplasmosis. Future priorities include conducting robust longitudinal studies of whether education correlates with reduced adverse disease outcomes, modifying educational materials as new information regarding region-specific risk factors is discovered, and ensuring materials are widely accessible.
ABSTRACT
The in trust sweetpotato collection housed by the International Center of Potato (CIP) is one of the largest assemblages of plant material representing the genetic resources of this important staple crop. The collection currently contains almost 6,000 accessions of Ipomoea batatas (cultivated sweetpotato) and over 1,000 accessions of sweetpotato crop wild relatives (CWRs). In this study, the entire cultivated collection (5,979 accessions) was genotyped with a panel of 20 simple sequence repeat (SSR) markers to assess genetic identity, diversity, and population structure. Genotyping and phenotyping of in vitro plantlets and mother plants were conducted simultaneously on 2,711 accessions (45% of the total collection) to identify and correct possible genetic identity errors which could have occurred at any time over the thirty plus years of maintenance in the in vitro collection. Within this group, 533 accessions (19.6%) had errors in identity. Field evaluations of morphological descriptors were carried out to confirm the marker data. A phylogenetic tree was constructed to reveal the intraspecific relationships in the population which uncovered high levels of redundancy in material from Peru and Latin America. These genotypic data were supported by morphological data. Population structure analysis demonstrated support for four ancestral populations with many of the accessions having lower levels of gene flow from the other populations. This was especially true of germplasm derived from Peru, Ecuador, and Africa. The set of 20 SSR markers was subsequently utilized to examine a subset of 189 accessions from the USDA sweetpotato germplasm collection and to identify and reconcile potential errors in the identification of clones shared between these collections. Marker analysis demonstrated that the USDA subset of material had 65 unique accessions that were not found in the larger CIP collection. As far as the authors are aware, this is the first report of genotyping an entire sweetpotato germplasm collection in its entirety.
ABSTRACT
Cryopreservation is currently the only method which allows long-term conservation of living clonal plant material in the vapor or liquid phase of nitrogen (at -140 to -196 °C) allowing tissue to be viable for decades or perhaps centuries. Specifically, for species with recalcitrant seeds or requiring constant vegetative propagation, it is the method of choice for the long-term conservation of its genetic resources. The protocol described here is a modification of a previously developed plant vitrification solution 2 (PVS2)-droplet vitrification method of potato shoot tips, adapted from Musa species. Utilizing this protocol, the International Potato Center (CIP) has successfully stored in the cryobank more than 3000 cultivated potato accessions, belonging to seven species and nine different taxa [16], originating principally from ten countries in South and Central America. As part of CIP's quality management system, all vegetative material placed in cryo is routinely subsampled, thawed, and assessed to confirm that whole plantlets can be produced after storage in liquid nitrogen. Complete plant recovery rates of thawed shoot tips range from 20% to 100% (average rate: 60%). This chapter describes the complete set of steps from the routine procedure of cryopreserving potato shoot tips for long-term conservation.
Subject(s)
Solanum tuberosum , Cryopreservation , Nitrogen , Plant Shoots , VitrificationABSTRACT
Bacterial microorganisms which are latent in in vitro cultures can limit the efficiency of in vitro methods for the conservation of genetic resources. In this study we screened 2,373 accessions from the in vitro sweetpotato germplasm collection of the International Potato Center in Lima, Peru for bacteria associated with plantlets in tissue culture through a combination of morphological methods and partial 16S rDNA sequencing. Bacteria were detected in 240 accessions (10% of the accessions screened) and we were able to isolate 184 different bacterial isolates from 177 different accessions. These corresponded to at least nineteen Operational Taxonomic Units (OTUs) of bacteria, belonging to the genera Sphingomonas, Bacillus, Paenibacillus, Methylobacterium, Brevibacterium, Acinetobacter, Microbacterium, Streptomyces, Staphylococcus, and Janibacter. Specific primers were developed for PCR based diagnostic tests that were able to rapidly detect these bacteria directly from tissue culture plants, without the need of microbial sub-culturing. Based on PCR screening the largest bacterial OTUs corresponded to a Paenibacillus sp. closely related to Paenibacillus taichungensis (41.67%), and Bacillus sp. closely related to Bacillus cereus (22.22%), and Bacillus pumilus (16.67%). Since in vitro plant genetic resources must be microbe-free for international distribution and use, any microbial presence is considered a contamination and therefore it is critical to clean all cultures of these latent-appearing bacteria. To accomplish this, plantlets from in vitro were transferred to soil, watered with Dimanin® (2 ml/l) weekly and then reintroduced into in vitro. Of the 191 accessions processed for bacterial elimination, 100% tested bacteria-free after treatment. It is suspected that these bacteria may be endosymbionts and some may be beneficial for the plants.
ABSTRACT
Genome assembly of polyploid plant genomes is a laborious task as they contain more than two copies of the genome, are often highly heterozygous with a high level of repetitive DNA. Next Generation genome sequencing data representing one Chilean and five Peruvian polyploid potato (Solanum spp.) landrace genomes was used to construct genome assemblies comprising five taxa. Third Generation sequencing data (Linked and Long-read data) was used to improve the assembly for one of the genomes. Native landraces are valuable genetic resources for traits such as disease and pest resistance, environmental tolerance and other qualities of interest such as nutrition and fiber for breeding programs. The need for conservation and enhanced understanding of genetic diversity of cultivated potato from South America is also crucial to North American and European cultivars. Here, we report draft genomes from six polyploid potato landraces representing five taxa, illustrating how Third Generation Sequencing can aid in assembling polyploid genomes.
Subject(s)
Genome, Plant , Solanum tuberosum/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing , Polyploidy , South AmericaABSTRACT
Breeders rely on genetic integrity of material from genebanks; however, admixture, mislabeling, and errors in original data can occur and be detrimental. Two hundred and fifty accessions, representing paired samples consisting of original mother plants and their in vitro counterparts from the cultivated potato collection at the International Potato Center (CIP) were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity of the accessions and evaluate genetic diversity of the potato collection. Diploid, triploid, and tetraploid accessions were included, representing seven cultivated potato taxa (based on Hawkes, 1990). Fingerprints between voucher mother plants maintained in the field and in vitro clones of the same accession were used to evaluate identity, relatedness, and ancestry using hierarchal clustering and model-based Bayesian admixture analyses. Generally, in vitro and field clones of the same accession grouped together; however, 11 (4.4%) accessions were mismatches genetically, and in some cases the SNP data revealed the identity of the mixed accession. SNP genotypes were used to assess genetic diversity and to evaluate inter- and intraspecific relationships along with determining population structure and hybrid origins. Phylogenetic analyses suggest that the triploids included in this study are genetically similar. Further, some genetic redundancies among individual accessions were also identified along with some putative misclassified accessions. Accessions generally clustered together based on taxonomic classification and ploidy level with some deviations. STRUCTURE analysis identified six populations with significant gene flow among the populations, as well as revealed hybrid taxa and accessions. Overall, the Infinium 12K V2 Potato Array proved useful in confirming identity and highlighting the diversity in this subset of the CIP collection, providing new insights into the accessions evaluated. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality. For breeders and other users of these collections, confirmed identity is critical, as well as for quality management programs and to provide insights into the accessions evaluated.
Subject(s)
DNA Fingerprinting/methods , Genetic Variation , Solanum tuberosum/genetics , Bayes Theorem , Biological Specimen Banks , Diploidy , Genotype , Phylogeny , Polymorphism, Single Nucleotide , Solanum tuberosum/classification , Species Specificity , Tetraploidy , TriploidyABSTRACT
Major food adulteration incidents occur with alarming frequency and are episodic, with the latest incident, involving the adulteration of meat from 21 producers in Brazil supplied to 60 other countries, reinforcing this view. Food fraud and counterfeiting involves all types of foods, feed, beverages, and packaging, with the potential for serious health, as well as significant economic and social impacts. In the spirit drinks sector, counterfeiters often 'recycle' used genuine packaging, or employ good quality simulants. To prove that suspect products are non-authentic ideally requires accurate, sensitive, analysis of the complex chemical composition while still in its packaging. This has yet to be achieved. Here, we have developed handheld spatially offset Raman spectroscopy (SORS) for the first time in a food or beverage product, and demonstrate the potential for rapid in situ through-container analysis; achieving unequivocal detection of multiple chemical markers known for their use in the adulteration and counterfeiting of Scotch whisky, and other spirit drinks. We demonstrate that it is possible to detect a total of 10 denaturants/additives in extremely low concentrations without any contact with the sample; discriminate between and within multiple well-known Scotch whisky brands, and detect methanol concentrations well below the maximum human tolerable level.
Subject(s)
Alcoholic Beverages/analysis , Ethanol/analysis , Food Contamination/analysis , Spectrum Analysis, Raman/methods , Brazil , Food Contamination/prevention & control , Humans , Meat/analysis , Methanol/analysis , Reproducibility of ResultsABSTRACT
The wild and cultivated species of potato have been utilized in potato breeding to good effect but only a very small sample of the available biodiversity has been exploited. In total, 468 accessions of wild and cultivated species of potato were assessed for resistance to the oomycete pathogen Phytophthora infestans using greenhouse assays. Wide phenotypic variation for resistance was found within a species (i.e., among accessions) but not among species which, on average, were similar. Nineteen accessions had resistance levels better than or similar to the variety Chucmarina, which is routinely used by the International Potato Center as a resistant control. Surprisingly, a number of accessions were significantly more susceptible than the susceptible control, Tomasa Condemayta. Frequency histograms of species indicated continuous variation for resistance with little evidence for functional resistance genes.
ABSTRACT
Hay un creciente interés por estudiar la desnutrición en el paciente hospitalizado y por precisar algunas de sus características fundamentales con el objetivo de diseñar planes de apoyo nutricional. El interés ha estado orientado a determinar la prevalencia de la desnutrición en el paciente internado, identificar a los pacientes que necesitan tratamiento nutricional y definir las características de un grupo de estudio. Evaluamos, en un corte transversal al ingreso, 378 niños de 1 mes a 15 años de edad hospitalizados en agosto septiembre de 1991. Fueron admitidos en 165,400 camas, (el 41.25 por ciento) del total disponibles en la institución). Se excluyeron pacientes quirúrgicos y de terapia intensiva. Una vez ingresados, eran pesados y medidos por los médicos residentes. Se calcularon las adecuaciones Peso/Edad, Peso/Talla y Talla/Edad en relación a los modelos del National Center for Health Statistics (NCHS). La prevalencia de la malnutrición aguda Peso/Talla -< (90 por ciento) fue de (35.2 por ciento) (133/378) y la de malnutrición crónica (Talla/Edad -< 90 por ciento), (19.1 por ciento) 72/378. Un (8.7 por ciento) 33/378 se encontraba en zonas de mayor compromiso nutricional (Peso/Talla -< 80 por ciento). Se admitieron 59 pacientes con diagnóstico de Desnutrición Protéico-Calórica severa, de éstos 50 con el tipo Marasmo y 9 con el tipo Kwashiorkor. En el Hospital del Niño de Panamá se evidencia un alto porcentaje de sujetos con compromiso nutricional severo, lo que hace necesario la creación de un Programa de Nutrición Clínica para el seguimiento y control bajo medidas de apoyo nutricional
Subject(s)
Infant, Newborn , Infant , Child, Preschool , Child , Humans , Kwashiorkor , Nutrition Disorders , Nutritional Status , Patients , PediatricsABSTRACT
Se revisaron los casos de sarampión en los niños indígenas procedentes del Bayano. Al compararlos con los casos ocurridos en las regiones Metropolitana y de San Miguelito se observó que en el grupo indígena el sarampión afectó principalmente a los mayores de 1 año; las complicaciones pulmonares y las nutricionales fueron más graves que en los niños no indígenas