Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Viruses ; 16(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38793603

ABSTRACT

Bovine viral diarrhea virus (BVDV) infections cause USD 1.5-2 billion in losses annually. Maternal BVDV after 150 days of gestation causes transient fetal infection (TI) in which the fetal immune response clears the virus. The impact of fetal TI BVDV infections on postnatal growth and white blood cell (WBC) methylome as an index of epigenetic modifications was examined by inoculating pregnant heifers with noncytopathic type 2 BVDV or media (sham-inoculated controls) on Day 175 of gestation to generate TI (n = 11) and control heifer calves (n = 12). Fetal infection in TI calves was confirmed by virus-neutralizing antibody titers at birth and control calves were seronegative. Both control and TI calves were negative for BVDV RNA in WBCs by RT-PCR. The mean weight of the TI calves was less than that of the controls (p < 0.05). DNA methyl seq analysis of WBC DNA demonstrated 2349 differentially methylated cytosines (p ≤ 0.05) including 1277 hypomethylated cytosines, 1072 hypermethylated cytosines, 84 differentially methylated regions based on CpGs in promoters, and 89 DMRs in islands of TI WBC DNA compared to controls. Fetal BVDV infection during late gestation resulted in epigenomic modifications predicted to affect fetal development and immune pathways, suggesting potential consequences for postnatal growth and health of TI cattle.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , DNA Methylation , Diarrhea Viruses, Bovine Viral , Epigenesis, Genetic , Leukocytes , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/virology , Bovine Virus Diarrhea-Mucosal Disease/genetics , Female , Pregnancy , Leukocytes/virology , Diarrhea Viruses, Bovine Viral/genetics , Antibodies, Viral/blood , Fetal Diseases/virology , Fetal Diseases/veterinary , Fetal Diseases/genetics , Diarrhea Virus 2, Bovine Viral/genetics , Fetus/virology
2.
Transl Anim Sci ; 8: txae045, 2024.
Article in English | MEDLINE | ID: mdl-38585172

ABSTRACT

One hundred and eighty crossbred beef steers (406.0 ±â€…2.2 kg) were used to determine the impact of a novel direct-fed microbial (DFM) on growth performance, carcass characteristics, rumen fermentation characteristics, and immune response in finishing beef cattle. Steers were blocked by body weight (BW) and randomly assigned, within block, to 1 of 2 treatments (3 replicates/treatment: 30 steers/replicate). Treatments included: (1) no DFM (control) and (2) DFM supplementation at 50 mg ∙ animal-1 ∙ d-1 (BOVAMINE DEFEND Plus). All steers were fed a high-concentrate finishing diet and individual feed intake was recorded daily via the GrowSafe system. BWs were collected every 28 d. On day 55, 10 steers per pen were injected with ovalbumin (OVA). Jugular blood samples were collected from each steer on days 0, 7, 14, and 21 post injection. On day 112, the same steers were injected again with OVA and intramuscularly with a pig red blood cell solution. Jugular blood samples were collected from each steer on days 0, 7, 14, and 21 post injection. On day 124, rumen fluid was collected from 3 steers per treatment and used to estimate in vitro rumen fermentation characteristics. Equal numbers of steers per treatment were transported to a commercial abattoir on days 145, 167, and 185 of the experiment, harvested, and carcass data were collected. Initial BW was similar across treatments. On days 28 and 55, steers receiving DFM had heavier BW (P < 0.01) compared to controls. The average daily gain was greater in DFM-supplemented steers from days 0 to 28 (P < 0.01) and days 0 to 55 (P < 0.01) of the experiment compared to controls. Overall dry matter intake (DMI) was greater (P < 0.04) and overall feed efficiency was similar in DFM-supplemented steers compared to controls. Dressing percentage (P < 0.02) was greater in steers receiving DFM compared to controls. Antibody titers to injected antigens were similar across treatments. However, red blood cell superoxide dismutase activity was greater (P < 0.05) in DFM-supplemented steers compared to controls. In vitro molar proportions of isobutyric and butyric acid were greater (P < 0.01) and dry matter (DM) digestibility tended (P < 0.07) to be greater in rumen fluid obtained from steers supplemented with DFM. These data suggest that BOVAMINE DEFEND Plus supplementation improves growth performance during the initial period of the finishing phase, increases overall DMI and dressing percentage, and may impact antioxidant status in beef cattle.

3.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38613515

ABSTRACT

Angus-crossbred steers (n = 400; 369.7 ±â€…7.6 kg) were used to determine the influence of trace mineral (TM) source and chromium propionate (Cr Prop) supplementation on performance, carcass characteristics, and ruminal and plasma variables in finishing steers. Steers were blocked by body weight (BW) and randomly assigned within block to treatments in a 2 × 2 factorial arrangement, with factors being: 1) TM source (STM or HTM) and 2) Cr supplementation (0 or 0.25 mg Cr/kg DM, -Cr or + Cr, respectively). Treatments consisted of the addition of: 1) sulfate TM (STM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), 2) STM and 0.25 mg Cr/kg DM from Cr Prop, 3) hydroxychloride TM (HTM; 90, 40, and 18 mg/kg DM of Zn, Mn, and Cu, respectively), and 4) HTM and 0.25 mg Cr/kg DM from Cr Prop. Each treatment consisted of 10 replicate pens with 10 steers per pen. Body weights were obtained on consecutive days at the initiation and termination of the 154-d study. Steers were fed a steam-flaked corn-based finishing diet. Ractopamine hydrochloride was fed for the last 31 d of the study. Ruminal fluid and blood samples were obtained from one steer per pen on days 28 and 84 for ruminal volatile fatty acids (VFA) and plasma TM and glucose analysis. Steers were slaughtered at the end of the study and individual carcass data were collected. No Cr × TM source interactions (P = 0.48) were detected. Steers supplemented with HTM had greater (P = 0.04) hot carcass weight (HCW), dressing percentage (DP), longissimus muscle (LM) area, and USDA yield grade (YG), and tended (P = 0.12) to have greater average daily gain (ADG) than those receiving STM. Average daily gain, gain:feed, dressing percentage, and longissimus muscle area were greater (P = 0.04) for + Cr steers compared to-Cr steers. Hot carcass weight tended (P = 0.06) to be greater for + Cr steers. Ruminal acetate concentrations at 28 d were lesser (P = 0.01) for HTM vs. STM steers, and greater (P = 0.04) for + Cr steers compared to-Cr steers. Plasma concentrations of Zn, Cu, and Mn were not affected by TM source or Cr supplementation. Steers supplemented with Cr had greater (P = 0.05) plasma glucose concentrations than-Cr steers at 28 but not at 84 d. Results of this study indicate replacing STM with HTM improved carcass characteristics in finishing steers, and Cr Prop supplementation improved steer performance and carcass characteristics.


Trace minerals (TM) are supplemented to finishing cattle diets to prevent TM deficiencies. Sources of TM differ in their bioavailability and effect on rumen fermentation. Chromium is a TM required in low concentrations to enhance insulin activity. We tested the effect of TM source (hydroxychloride; HTM vs. sulfate; STM) and supplemental Cr propionate (Cr Prop) on performance and carcass characteristics of finishing steers. Providing 0.25 mg of supplemental Cr/kg DM, from Cr Prop, improved gain, feed efficiency, and carcass characteristics in steers. Steers supplemented with HTM tended to gain faster and had improved carcass characteristics of economic importance compared to those supplemented with STM.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Propionates , Trace Elements , Animals , Cattle/physiology , Cattle/growth & development , Male , Dietary Supplements/analysis , Animal Feed/analysis , Diet/veterinary , Trace Elements/pharmacology , Trace Elements/administration & dosage , Propionates/pharmacology , Propionates/administration & dosage , Rumen/drug effects , Rumen/metabolism , Body Composition/drug effects , Chromium/pharmacology , Chromium/administration & dosage , Animal Nutritional Physiological Phenomena , Random Allocation , Meat/analysis
4.
Vet Clin North Am Food Anim Pract ; 39(3): 505-516, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455235

ABSTRACT

Trace minerals and vitamins are essential for optimizing feedlot cattle growth, health, and carcass characteristics. Understanding factors that influence trace mineral and vitamin absorption and metabolism is important when formulating feedlot cattle diets. Current feedlot industry supplementation practices typically exceed published trace mineral requirements by a factor of 2 to 4. Therefore, the intent of this review is to briefly discuss the functions of trace minerals and vitamins that are typically supplemented in feedlot diets and to examine the impact of dose of trace mineral or vitamin on growth performance, health, and carcass characteristics of feedlot cattle.


Subject(s)
Trace Elements , Vitamins , Cattle , Animals , Dietary Supplements , Vitamin A , Diet/veterinary , Ruminants/metabolism , Animal Feed/analysis , Minerals/metabolism
5.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35938914

ABSTRACT

Liver abscess etiology in feedlot steers involves the escape of bacteria from the digestive tract to form a polymicrobial abscess within or on the external surface of the liver. However, little is known about the effects of feedlot finishing systems on the microbial composition of the liver abscess purulent material. Liver abscesses were collected at the time of harvest from steers originating from a single feedlot managed in either a traditional program (which included tylosin phosphate supplementation) or a natural program (without tylosin phosphate supplementation). The purulent material of liver abscesses from traditionally managed steers (N = 53 abscesses) and that of naturally managed steers (N = 62 abscesses) was characterized using the V4 region of the 16S rRNA gene. Two phyla and three genera were found in greater than 1% relative abundance across all abscesses. The genus Fusobacterium was identified in all liver abscess samples and accounted for 64% of sequencing reads. Bacteroides and Porphyromonas genera accounted for 33% and 1% of reads, respectively. Trueperella was more likely to be found in the liver abscesses of naturally managed steers than traditionally managed steers (P = 0.022). Over 99% of the genus-level bacterial sequences observed across all liver abscesses belonged to Gram-negative genera. Bacteria known to colonize both the rumen and hindgut were identified within liver abscesses. No differences in alpha diversity or beta diversity were detected between liver abscess communities (between the two management programs or individual pens) when tested as richness, Shannon Diversity Index, or weighted UniFrac distances (P > 0.05). These results were consistent with previous identification of Fusobacterium necrophorum as the primary bacteriologic agent within liver abscesses and emphasized the relationship between the gastrointestinal microbiota and liver abscess formation. Though the microbiota of the liver abscess purulent material was similar between steers fed an antibiotic-free diet and those fed an antibiotic-containing diet from the same feedlot, divergence was detected in liver abscess communities with some being dominated by Fusobacterium and others being dominated by Bacteroides.


As feedlot cattle consume grain, the rumen becomes more acidic. If the lining of the digestive tract is damaged, bacteria that normally remain in the digestive tract can enter the body. Certain bacteria like Fusobacterium necrophorum are involved in the formation of liver abscesses. Feedlot cattle are commonly fed an antibiotic (tylosin phosphate) to reduce the occurrence of liver abscesses, but increasing scrutiny is placed on the antibiotic use. However, the effect of eliminating the antibiotic used to prevent liver abscesses on the bacterial communities involved in liver abscess formation is unknown. This study compared the bacteria found within liver abscesses of cattle fed tylosin phosphate with that of cattle not fed tylosin phosphate. All liver abscesses contained F. necrophorum, and Bacteroides was the second most commonly identified bacterium. Trace amounts of bacteria known to colonize the mouth and digestive tract were observed. Trueperella, a bacteria targeted by tylosin phosphate, was found more frequently in liver abscesses from cattle that received no antibiotic. While the core bacterial composition of the liver abscess was unaffected by antibiotic supplementation to feedlot steers, reduced Trueperella in liver abscesses from cattle-fed tylosin phosphate could be related to a reduction in liver abscess prevalence.


Subject(s)
Cattle Diseases , Liver Abscess , Microbiota , Cattle , Animals , Tylosin , RNA, Ribosomal, 16S/genetics , Animal Feed/analysis , Cattle Diseases/microbiology , Liver Abscess/microbiology , Liver Abscess/veterinary , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Phosphates
6.
Front Vet Sci ; 9: 897996, 2022.
Article in English | MEDLINE | ID: mdl-35664853

ABSTRACT

Ruminants are a critical human food source and have been implicated as a potentially important source of global methane emissions. Because of their unique digestive physiology, ruminants rely upon a symbiotic relationship with the complex and rich community of microorganism in the foregut to allow digestion of complex carbohydrates. This study used 16S rRNA gene sequencing to investigate the composition of microbial communities from three rumen micro-environments of cattle fed identical diets: (1) free fluid, (2) the fibrous pack, and (3) the mucosa. Community composition analysis revealed that while a phylogenetic core including the most abundant and most common ruminal taxa (members of Bacteroidetes and Firmicutes) existed across micro-environments, the abundances of these taxa differed significantly between fluid- and mucosa-associated communities, and specific lineages were discriminant of individual micro-environments. Members of Firmicutes, specifically Clostridiales, Lachnospiraceae, Mogibacteriaceae, Christenellaceae, and Erysipelotrichaceae were significantly more abundant in fluid communities, while members of Bacteroidetes, namely Muribaculaceae and Prevotellaceae were more abundant in mucosa-associated communities. Additionally, Methanobacteriaceae, a family of methanogenic Archaea, was more abundant in fluid-associated communities. A set of four more diverse lineages were discriminant of pack-associated communities that included Succinivibrionaceae, RFP12 (Verruco-5), Fibrobacteraceae, and Spirochaetaceae. Our findings indicate that different ecological niches within each micro-environment have resulted in significant differences in the diversity and community structure of microbial communities from rumen fluid, pack, and mucosa without the influence of diet that will help contextualize the influence of other environmental factors.

7.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35137141

ABSTRACT

Hot-iron branding uses thermal injury to permanently identify cattle causing painful tissue damage. The primary objective was to examine the physiological and behavioral effects of oral meloxicam (MEL), compared to a control, administered at the time of hot-iron branding in Angus and Hereford steers and heifers. The secondary objectives were to investigate breed and sex effects on pain biomarkers. A total of 70 yearlings, consisting of 35 heifers and 35 steers (Angus, Hereford, or Angus × Hereford), were enrolled in the study. Animals were blocked by sex, randomized across weight, and assigned to receive MEL (1 mg/kg) or a placebo (CON). Biomarkers were assessed for 48 h after branding and included infrared thermography (IRT), mechanical nociceptive threshold (MNT), accelerometry and a visual analog scale (VAS), and serum cortisol and prostaglandin E2 metabolites (PGEM). Wound healing was assessed for 12 wk. Hair samples to quantify cortisol levels were taken prior to and 30 d post-branding. Responses were analyzed using repeated measures with calf nested in treatment as a random effect, and treatment, time, treatment by time interaction, breed, and sex as fixed effects. There was a treatment by time interaction for PGEM (P < 0.01) with MEL having lower values than CON at 6, 24, and 48 h (MEL: 18.34 ± 3.52, 19.61 ± 3.48, and 22.24 ± 3.48 pg/mL, respectively; CON: 32.57 ± 3.58, 37.00 ± 3.52, and 33.07 ± 3.48 pg/mL; P < 0.01). MEL showed less of a difference in maximum IRT values between the branded (2.27 ± 0.29 °C) and control site (3.15 ± 0.29 °C; P < 0.01). MEL took fewer lying bouts at 0-12 h (4.91 bouts ± 0.56) compared with CON (6.87 bouts ± 0.55; P < 0.01). Compared with Hereford calves, Angus calves exhibited greater serum but lower hair cortisol, greater PGEM, more lying bouts, and less healed wound scores at 3, 4, and 5 wk. Compared with heifers, steers exhibited lower PGEM, lower branding site and ocular IRT, higher MNT, and lower plasma meloxicam levels. Steers spent more time lying, took more lying bouts and had greater VAS pain, and more healed wound scores at 5 wk than heifers. Meloxicam administration at branding reduced branding and control site temperature differences and reduced lying bouts for the first 12 h. Breed and sex effects were observed across many biomarkers. Changes from baseline values for IRT, MNT, lying time, step count, VAS pain, and wound scoring all support that branding cattle is painful.


Hot-iron branding uses thermal injury to permanently identify cattle causing painful tissue damage. The primary objective was to examine the effects of oral meloxicam (MEL), compared with a control, administered at the time of hot-iron branding in Angus and Hereford steers and heifers. The secondary objectives were to investigate breed and sex effects on pain biomarkers. A total of 70 yearlings, consisting of 35 heifers and 35 steers (Angus, Hereford, or Angus × Hereford), were enrolled. Animals were assigned to receive MEL or a placebo. Changes from baseline values for infrared thermography (IRT), mechanical nociceptive threshold, lying time, step count, visual analog scale score, and wound scoring all support that hot-iron branding cattle is painful and investigation into analgesic strategies is needed. MEL administration reduced IRT differences from the branding and control site and reduced lying bouts. Breed and sex effects were observed across a wide range of biomarkers and should be considered in future pain studies. The practicality of administering a nonsteroidal anti-inflammatory drug once at the time of branding is attractive. However, a multimodal approach using a combination of analgesics or longer acting analgesic option warrants further investigation to alleviate pain and discomfort caused by hot-iron branding.


Subject(s)
Iron , Pain , Animals , Biomarkers , Cattle , Female , Meloxicam , Pain/drug therapy , Pain/prevention & control , Pain/veterinary , Pain Measurement/veterinary
8.
Transl Anim Sci ; 6(1): txab231, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35088041

ABSTRACT

During lairage at slaughter plants, cattle can be exposed to extreme heat conditions from pen densities and holding pen microclimates. While research outlining heat mitigation strategies used in other sectors of the beef supply chain is available, there is no published data on the use of heat mitigation strategies at slaughter plants. The objective of this study was to characterize short-term heat mitigation strategies used by commercial beef slaughter plants in the United States. Twenty-one beef slaughter plants, representing an estimated 60% of beef slaughter in the United States, were included in the study. All plants indicated use of at least one heat mitigation strategy, and five of them used more than one type. Sprinklers/misters were the most commonly used heat mitigation type (n = 17, 81%), and fans were the least common type (n = 4, 19%). Shade usage was present in several plants (n = 7, 33%), ranging from barn style roofs to shade cloths. Respondents indicated that they believed heat mitigation strategies provide benefits both to cattle well-being and meat quality outcomes. Future research should focus on the effectiveness of these techniques in improving animal well-being and quality outcomes in the slaughter plant environment and protocols for optimum implementation.

9.
Animals (Basel) ; 11(7)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34359210

ABSTRACT

The majority of Mo research has focused on the antagonist effect of Mo, alone or in combination with elevated dietary S, on Cu absorption and metabolism in ruminants. Diets containing both >5.0 mg of Mo/kg DM and >0.33% S have been reported to reduce the Cu status in cattle and sheep. Therefore, due to the potential for inducing Cu deficiency, Mo and S concentrations in the diet should be monitored and kept within appropriate values. Elevated sulfate concentrations in drinking water can also be detrimental to livestock production, especially in ruminants. High concentrations of sulfate in water have been extensively studied in cattle because high-sulfate water induces polioencephalomalacia in ruminants. However, little research has been conducted investigating the impact of Mo in water on Cu metabolism in ruminants. Based on the limited number of published experiments, it appears that Mo in drinking water may have a lower antagonistic impact on the Cu status in cattle when compared to Mo consumed in the diet. This response may be due to a certain percentage of water bypassing the rumen when consumed by ruminants. Therefore, the objective of this review was to examine the impact of Mo in drinking water on cattle performance and Mo and Cu metabolism.

10.
J Anim Sci ; 99(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33211852

ABSTRACT

Shade is a mechanism to reduce heat load providing cattle with an environment supportive of their welfare needs. Although heat stress has been extensively reviewed, researched, and addressed in dairy production systems, it has not been investigated in the same manner in the beef cattle supply chain. Like all animals, beef cattle are susceptible to heat stress if they are unable to dissipate heat during times of elevated ambient temperatures. There are many factors that impact heat stress susceptibility in beef cattle throughout the different supply chain sectors, many of which relate to the production system, that is, availability of shade, microclimate of environment, and nutrition management. The results from studies evaluating the effects of shade on production and welfare are difficult to compare due to variation in structural design, construction materials used, height, shape, and area of shade provided. Additionally, depending on operation location, shade may or may not be beneficial during all times of the year, which can influence the decision to make shade a permanent part of management systems. Shade has been shown to lessen the physiologic response of cattle to heat stress. Shaded cattle exhibit lower respiration rates, body temperatures, and panting scores compared with unshaded cattle in weather that increases the risk of heat stress. Results from studies investigating the provision of shade indicate that cattle seek shade in hot weather. The impact of shade on behavioral patterns is inconsistent in the current body of research, with some studies indicating that shade provision impacts behavior and other studies reporting no difference between shaded and unshaded groups. Analysis of performance and carcass characteristics across feedlot studies demonstrated that shaded cattle had increased ADG, improved feed efficiency, HCW, and dressing percentage when compared with cattle without shade. Despite the documented benefits of shade, current industry statistics, although severely limited in scope, indicate low shade implementation rates in feedlots and data in other supply chain sectors do not exist. Industry guidelines and third-party on-farm certification programs articulate the critical need for protection from extreme weather but are not consistent in providing specific recommendations and requirements. Future efforts should include: updated economic analyses of cost vs. benefit of shade implementation, exploration of producer perspectives and needs relative to shade, consideration of shade impacts in the cow-calf and slaughter plant segments of the supply chain, and integration of indicators of affective (mental) state and preference in research studies to enhance the holistic assessment of cattle welfare.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Body Temperature , Cattle , Female , Heat Stress Disorders/veterinary , Heat-Shock Response , Respiratory Rate , Sunlight
11.
PLoS One ; 15(12): e0242673, 2020.
Article in English | MEDLINE | ID: mdl-33264353

ABSTRACT

Ractopamine hydrochloride (RAC) is a beta-agonist approved by the U.S. Food and Drug Administration (FDA) as a medicated feed ingredient for cattle during the final days of finishing to improve feed efficiency and growth. Maximum residue limits and U.S. FDA residue tolerances for target tissues have defined management practices around RAC usage in the U.S. However, many countries have adopted zero tolerance policies and testing of off-target tissues, presenting a major challenge for international export. Therefore, the objective this study was to determine the necessary withdrawal time among cattle group-fed RAC to achieve residue concentrations below tolerance levels in muscle and off-target tissues. Specifically, both total and parent RAC residues were quantified in muscle, adipose tissue, rendered tallow, and large intestines from animals group-fed RAC and subjected to withdrawal 2, 4, or 7 days before harvest. Ractopamine (parent and total) residues were below the assay limit of detection (< 0.12 ng/g) in all muscle and adipose tissue samples from animals in control groups (no RAC). However, RAC residues were detectable, but below the limit of quantitation, in 40% of tallow and 17% of large intestine samples from control animals. As expected, mean RAC residue concentrations in muscle, adipose tissue, and large intestine samples decreased (P < 0.05) as the RAC withdrawal duration (days) was extended. Irrespective of RAC withdrawal duration, mean parent RAC residue concentrations in muscle, adipose tissue, and large intestine ranged from 0.33 to 0.76 ng/g, 0.16 to 0.26 ng/g, 3.97 to 7.44 ng/g, respectively and all tallow samples were > 0.14 ng/g (detectable but below the limit of quantitation). Results of this study provide a baseline for the development of management protocol recommendations associated with withdrawal following group-feeding of RAC to beef cattle in countries that allow RAC use and intend to export to global markets which may be subject to zero tolerance policies and off-target tissue testing.


Subject(s)
Drug Residues/analysis , Fats/chemistry , Intestine, Large/chemistry , Muscles/chemistry , Phenethylamines/pharmacology , Red Meat/analysis , Animals , Cattle , Least-Squares Analysis , Limit of Detection , Phenethylamines/analysis
12.
J Anim Sci ; 97(4): 1852-1864, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30859194

ABSTRACT

Eight crossbred steers (BW 719.0 ± 65.0 kg) with ruminal and duodenal cannulae were used to examine the effect of trace mineral (TM) source on digestibility; ruminal and duodenal solubility of Cu, Zn, and Mn; and in vitro release of Cu, Zn, and Mn from the solid fraction of ruminal digesta. Experiment 1 determined the effect of TM source on DM and NDF digestibility in steers fed a corn silage and steam-flaked corn-based diet. Treatments consisted of 10 mg Cu, 20 mg Mn, and 30 mg Zn/kg DM from either sulfate TM (STM) or hydroxy TM (HTM) sources. Following a 14-d adaptation period, total fecal output was collected for 5 d. Dry matter digestibility was not affected by treatment, but NDF digestibility tended (P < 0.09) to be greater in HTM vs. STM supplemented steers. In Exp. 2, steers were fed a diet without supplemental Cu, Zn, or Mn for 19 d. Steers were then administrated a pulse dose of STM or HTM (2× the National Research Council requirements for Cu, Mn, and Zn) via the rumen fistula. Ruminal and duodenal samples were obtained at 2-h intervals starting at -4 and ending at 24 h relative to dosing. Ruminal soluble Cu and Zn concentrations were affected by treatment, time, and treatment × time. Soluble concentrations and percent soluble Cu and Zn in ruminal digesta increased (P < 0.05) above 0-h values for 10 h following dosing with STM, but not HTM. Concentrations of Cu and Zn in ruminal solid digesta were also affected by treatment, time, and treatment × time. Steers dosed with STM had greater (P < 0.05) solid digesta Cu concentrations at 2 and 4 h but lesser (P < 0.05) concentrations from 6 to 20 h post-dosing than those receiving HTM. Ruminal solid digesta Zn concentrations were greater (P < 0.05) in HTM vs. STM-dosed steers from 6 through 24 h post-dosing. Distribution of Mn in ruminal digesta was affected by TM source, but to a lesser extent than Zn and Cu. Duodenal soluble TM concentrations were variable and not affected by treatment. Binding strength of TM to ruminal solid digesta was estimated at 0, 6, and 12 h post-dosing using dialysis against chelating agents. The percentage of Cu and Zn released from ruminal solid digesta by dialysis against Tris-EDTA was greater (P < 0.05) at 12 h post-dosing from steers receiving HTM vs. STM. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM.


Subject(s)
Cattle/physiology , Copper/metabolism , Dietary Supplements , Trace Elements/metabolism , Zinc/metabolism , Animals , Diet/veterinary , Male , Rumen/metabolism , Silage/analysis , Solubility , Zea mays
13.
J Anim Sci ; 97(3): 1364-1374, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30753494

ABSTRACT

Water is the most important nutrient in animal nutrition; however, water intake is rarely measured. The objective of this study was to determine whether previously published water intake (WI) equations for beef cattle would accurately predict WI from four experiments conducted under tropical conditions. The experiments were conducted from 2013 to 2015. Nellore (Bos indicus) growing bulls (Exps. 1, 2, and 3) and heifers (Exp. 4) were used in the feedlot trials. In all experiments, animals were fed for ad libitum DMI. The WI, animal performance, diet composition, and environmental data were collected. The prediction of WI using the current published WI equations was evaluated by regressing predicted and measured WI values. The regression was evaluated using the two-hypothesis test: H0: ß0 = 0 and H0: ß1 = 1 and Ha: not H0. If both null hypotheses were not rejected, it was concluded that the tested equation accurately estimated WI. To develop a WI prediction equation based on the input variables, a leave-one-out cross-validation method was proposed. The proposed equation was evaluated using similar methodology described above. All previously published eight equations overestimated WI of cattle used in the four experiments conducted in southeast Brazil. A possible explanation for the overestimate of WI is that previously published WI equations were generated from data collected from predominantly Bos taurus cattle raised under temperate climates. From the data collected from experiments conducted with Nellore cattle in southeast Brazil, the proposed equation (WI = 9.449 + 0.190 × MBW + 0.271 × TMAX -0.259 × HU + 0.489 × DMI, where the MBW is the metabolic BW (kg0.75), TMAX is the maximum temperature (°C), HU is the humidity (%) and DMI in kg/d), more accurately to predicts WI of cattle raised under tropical conditions.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Drinking , Animals , Brazil , Cattle/growth & development , Diet/veterinary , Female , Humidity , Male , Tropical Climate
14.
J Anim Sci ; 97(3): 1286-1295, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30649352

ABSTRACT

Four hundred crossbred steers were used in a randomized complete block design to investigate the effects of supplemental Zn source and concentration, and dietary Cr on performance and carcass characteristics of feedlot steers fed a steam-flaked corn-based finishing diet. Steers were blocked by initial BW within cattle source (3 sources) and randomly assigned within block to 1 of 5 treatments. Before the initiation of the experiment, trace mineral supplement sources were analyzed for Zn and Cr. Zinc and Cr concentrations of the Zn sources were used to balance all dietary treatments to obtain correct Zn and Cr experimental doses. Treatments were the addition of: 1) 90 mg Zn/kg DM from ZnSO4 and 0.25 mg Cr/kg DM from Cr propionate (90ZS+Cr); 2) 30 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (30ZH+Cr); 3) 90 mg Zn/kg DM from Zn hydroxychloride and 0.25 mg Cr/kg DM from Cr propionate (90ZH+Cr); 4) 60 mg Zn/kg DM from ZnSO4 and 30 mg Zn/kg DM from Zn methionine (90ZSM); and 5) 90 mg Zn/kg DM from Zn hydroxychloride (90ZH). Steers were individually weighed on d-2 and on 2 consecutive days at the end of the experiment. Initial liver biopsies were obtained from all steers at processing. Equal numbers of pen replicates per treatment were slaughtered at a commercial abattoir on day 162, 176, and 211; individual carcass data and final liver samples were collected. Total finishing dietary Zn and Cr concentrations were 118.4, 58.2, 114.2, 123.0, and 108.2 mg Zn/kg DM and 0.740, 0.668, 0.763, 0.767, and 0.461 mg Cr/kg DM, for treatments 1 to 5, respectively. Data were analyzed statistically using preplanned single degree of freedom contrasts. Steers receiving 90ZH+Cr had greater final BW (P < 0.04) and ADG (P < 0.03) when compared with steers receiving 90ZH. Additionally, hot carcass weight was 8.5 kg greater (P < 0.03) for 90ZH+Cr compared with 90ZH supplemented steers. Steers receiving 90ZH+Cr had greater longissimus muscle area when compared with steers receiving 90ZSM. Dry matter intake, G:F, morbidity and mortality, and all other carcass measurements were similar across treatments. These data indicate that under the conditions of this experiment, Zn source and concentration had no impact on live performance, liver Zn and Cu concentrations, and carcass characteristics. Supplemental Cr in diets containing 90 mg of supplemental Zn/kg DM from ZH improved final BW, ADG, and hot carcass weights.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Chromium/pharmacology , Dietary Supplements , Zinc/pharmacology , Abattoirs , Animals , Body Composition , Diet/veterinary , Liver/metabolism , Male , Random Allocation , Zea mays
15.
J Dairy Res ; 85(3): 273-276, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30156520

ABSTRACT

This Research Communication describes an investigation of the nutritional depletion of total mixed rations (TMR) by pest birds. We hypothesized that species-specific bird depredation of TMR can alter the nutritional composition of the ration and that these changes can negatively impact the performance of dairy cows. Blackbirds selected the high energy fraction of the TMR (i.e., flaked corn) and reduced starch, crude fat and total digestible nutrients during controlled feeding experiments. For Holsteins producing 37·1 kg of milk/d, dairy production modeling illustrated that total required net energy intake (NEI) was 35·8 Mcal/d. For the reference TMR unexposed to blackbirds and the blackbird-consumed TMR, NEI supplied was 41·2 and 37·8 Mcal/d, and the resulting energy balance was 5·4 and 2·0 Mcal/d, respectively. Thus, Holsteins fed the reference and blackbird-consumed TMR were estimated to gain one body condition score in 96 and 254 d, and experience daily weight change due to reserves of 1·1 and 0·4 kg/d, respectively. We discuss these results in context of an integrated pest management program for mitigating the depredation caused by pest birds at commercial dairies.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Diet/veterinary , Energy Intake/physiology , Passeriformes , Pest Control , Animal Feed/analysis , Animals , Behavior, Animal , Dairying/methods , Female , Food Preferences , Lactation/physiology , Nutritive Value
16.
Biol Reprod ; 98(4): 543-557, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29324978

ABSTRACT

Progesterone is a steroid hormone secreted from the corpus luteum (CL), which is responsible for establishment and maintenance of pregnancy. Early embryonic mortality often occurs due to inadequate regulation of uterine prostaglandin (PG) F2α secretion, leading to a decrease in progesterone and loss of pregnancy. The objective of the current study was to determine the effects of fish meal supplementation on luteal sensitivity to intrauterine infusions of PGF2α. Nonlactating beef cows received corn gluten meal or fish meal supplementation for 60 days. Cows were administered four intrauterine infusions of 0.25 mL saline at 6-h intervals (n = 6 corn gluten meal; n = 5 fish meal) or two doses of 0.5 mg PGF2α in 0.25 mL saline at 12-h intervals (n = 11 corn gluten meal; n = 11 fish meal) commencing on days 10 to 12 of the estrous cycle. At time of each infusion, luteal biopsies were collected to determine the effects of supplementation on expression of immediate early and steroidogenic genes involved in cholesterol transport and progesterone biosynthesis. Transrectal ultrasonography was performed to measure diameter of CL, and blood samples were collected to determine serum progesterone. Intrauterine infusion of PGF2α resulted in upregulation or no change in FOS, NR4A1, and 3BHSD and downregulation in LDLR, STARD1, and CYP11A1. Although CL diameter decreased, infusion of PGF2α resulted in functional regression in 91% of cows supplemented with corn gluten meal, and only 46% for fish meal supplemented animals. Results demonstrate that fish meal supplementation alters luteal sensitivity to PGF2α, which may affect fertility.


Subject(s)
Animal Feed , Corpus Luteum/drug effects , Dietary Supplements , Dinoprost/pharmacology , Luteolysis/drug effects , Uterus/drug effects , Animals , Cattle , Corpus Luteum/diagnostic imaging , Female , Fertility/drug effects , Progesterone/blood , Ultrasonography , Uterus/diagnostic imaging
17.
J Anim Sci Technol ; 57: 25, 2015.
Article in English | MEDLINE | ID: mdl-26290745

ABSTRACT

Rumen bypass fat is commonly added to increase energy intake in dairy cattle. The objective of this study is to examine the addition of rumen bypass fat during finishing period on performance and carcass characteristics in grain fed steers. This study was conducted as a completely randomized block design with 126 cross-bred steer calves (initial BW 471.5 ± 7.5 kg) randomly assigned to pens with 9 steers/pen (n = 7 pens/treatment). Each pen was randomly assigned to one of two treatment groups; rumen bypass fat treatment (CCS, calcium soap of palm fatty acids) and control diet (CT, tallow). The diets were formulated to be isonitrogenous and isocaloric. Animals were fed twice daily at 110 % of the previous daily ad libitum intake. Blood from each sample was taken from the jugular vein. Muscle and adipose samples were collected from the longissimus dorsi regions. Feedlot performance and carcass characteristics were assessed. To examine adipogenic gene expression, quantitative real-time PCR was completed. Steers fed the CT had a greater level of performance for most of the parameters measured. The CT group had greater DMI (P < 0.05) and tended to have greater ADG (P < 0.10). Marbling score (P < 0.05) and quality grade (P < 0.05) were greater for steers fed the CT diet than those fed CCS. The longissimus muscle area tended to be greater (P < 0.10) in steers fed CT (87.60 cm(2)) than those fed CCS (84.88 cm(2)). The leptin mRNA expression was down-regulated (P < 0.05) in adipose tissue of steers fed a CCS when compared to those fed CT. These data suggest that calcium soap of palm fatty acids can be added to finishing diets without significant reduction in final body weight, although there may be modest reductions in marbling and quality scores.

18.
Biol Trace Elem Res ; 129(1-3): 130-6, 2009.
Article in English | MEDLINE | ID: mdl-19099205

ABSTRACT

Copper is an essential trace mineral required for growth and development. Copper homeostasis within the cell is mediated by the expression of the Cu transporter protein (CTR1), ATPase7A (ATP7A), ATPase7B (ATP7B), Cox17, and Cu chaperone for Cu-Zn superoxide dismutase (CCS) which helps to regulate Cu uptake, export, and intracellular compartmentalization in non-ruminants. Copper also serves as a cofactor of antioxidant, superoxide dismutase1 (SOD1). Liver tissue from eighteen Holstein bull calves (average BW 201 +/- 58.5 kg, 7.3 +/- 1.9 months) from a previous experiment were utilized to characterize and identify hepatic mRNA related to Cu metabolism and homeostasis in cattle. Hepatic Cu concentration was determined via flame atomic absorption, and total RNA was extracted using TRI reagent and purified using RNeasy. Hepatic Cu concentrations ranged from 86 to 801 mg of Cu/kg DM. Real-time polymerase chain reaction analysis revealed that CTR1, ATP7A, and ATP7B mRNA expressions were negatively correlated with hepatic Cu concentration, while CCS (P = 0.0887) and SOD1 had a tendency (P = 0.0733) to be negatively correlated to hepatic Cu concentration. These data indicate that higher than normal hepatic Cu concentration downregulates gene expression of CTR1, ATP7A, ATP7B, and Cox17, which are involved in bovine liver copper homeostasis.


Subject(s)
Copper/metabolism , Homeostasis/genetics , Liver/metabolism , RNA, Messenger/genetics , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cattle , Copper/analysis , Liver/chemistry , RNA, Messenger/metabolism , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
19.
Biochem Biophys Res Commun ; 352(4): 884-8, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17157816

ABSTRACT

Copper (Cu) is believed to be integral in prion biology and the lack of Cu or replacement by other metal ions on prions may be involved in prion diseases. This theory has not been evaluated in the bovine. Thus, mature cows were used to determine the effects of Cu deficiency on brain Cu concentrations and prion functional characteristics. Two Cu states were induced, Cu-adequate (n=4) and Cu-deficient (n=4). Copper deficiency resulted in decreased (44%) brain Cu concentrations but had no effect on prion concentrations. Based on Western blot analysis, the molecular weights, glycoform distributions, and elution profiles of brain prions were not affected by Cu status. Importantly, Cu status did not affect prion proteinase degradability as all prions were completely degraded by proteinase K. In conclusion, Cu status affected bovine brain Cu concentrations but had no detectable effects on brain prion protein characteristics.


Subject(s)
Brain/metabolism , Copper/deficiency , Copper/metabolism , Prion Diseases/metabolism , Animals , Cattle , Manganese/metabolism , Molecular Weight , Prions/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...