Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13600, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38866852

ABSTRACT

We aimed to assess salivary and seroprevalence of Toxoplasma immunoglobulins in risky populations and evaluate drug docking targeting TgERP. A cross-sectional study was conducted in Alexandria University hospitals' outpatient clinics. 192 participants were enrolled from September 2022 to November 2023. Anti-Toxoplasma IgG and IgM were determined in serum and saliva by ELISA. An in-Silico study examined TgERP's protein-protein interactions (PPIs) with pro-inflammatory cytokine receptors, anti-inflammatory cytokine, cell cycle progression regulatory proteins, a proliferation marker, and nuclear envelope integrity-related protein Lamin B1. Our findings revealed that anti-T. gondii IgG were detected in serum (66.1%) and saliva (54.7%), with 2.1% of both samples were positive for IgM. Salivary IgG had 75.59% sensitivity, 86.15% specificity, 91.40% PPV, 64.40% NPP, 79.17% accuracy and fair agreement with serum IgG. On the other hand, the sensitivity, specificity, PPV, NPV, and accuracy in detecting salivary IgM were 75.0%, 99.47%, 75.0%, 99.47%, and 98.96%. AUC 0.859 indicates good discriminatory power. Examined synthetic drugs and natural products can target specific amino acids residues of TgERP that lie at the same binding interface with LB1 and Ki67, subsequently, hindering their interaction. Hence, salivary samples can be a promising diagnostic approach. The studied drugs can counteract the pro-inflammatory action of TgERP.


Subject(s)
Immunoglobulin G , Immunoglobulin M , Inflammation , Saliva , Toxoplasma , Toxoplasmosis , Humans , Male , Saliva/metabolism , Female , Adult , Toxoplasmosis/drug therapy , Toxoplasmosis/blood , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Immunoglobulin G/blood , Cross-Sectional Studies , Inflammation/metabolism , Immunoglobulin M/blood , Immunoglobulin M/metabolism , Middle Aged , Young Adult , Antibodies, Protozoan/immunology , Computer Simulation , Seroepidemiologic Studies , Adolescent , Molecular Docking Simulation
2.
Nutrients ; 15(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36678324

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 µg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 µg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 µg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 µg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.


Subject(s)
COVID-19 , Oryza , Animals , Chlorocebus aethiops , Humans , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vero Cells , Papain , Antiviral Agents/pharmacology , Peptide Hydrolases
3.
Dis Markers ; 2022: 6780710, 2022.
Article in English | MEDLINE | ID: mdl-35655915

ABSTRACT

Background: To date (14 January 2022), the incidence and related mortality rate of COVID-19 in America, Europe, and Asia despite administrated of billions doses of many approved vaccines are still higher than in Egypt. Epigenetic alterations mediate the effects of environmental factors on the regulation of genetic material causing many diseases. Objective: We aimed to explore the methylation status of HeyL promoter, a downstream transcription factor in Notch signal, an important regulator of cell proliferation and differentiation blood, pulmonary epithelial, and nerves cells. Methods: Our objective was achieved by DNA sequencing of the product from methyl-specific PCR of HeyL promoter after bisulfite modification of DNA extracted from the blood samples of 30 COVID-19 patients and 20 control health subjects and studying its association with clinical-pathological biomarkers. Results: We found that the HeyL promoter was partial-methylated in Egyptian COVID-19 patients and control healthy subjects compared to full methylated one that was published in GenBank. We identified unmethylated CpG (TG) flanking the response elements within HeyL promoter in Egyptian COVID-19 patients and control healthy subjects vs. methylated CpG (CG) in reference sequence (GenBank). Also, we observed that the frequency of partial-methylated HeyL promoter was higher in COVID-19 patients and associated with aging, fever, severe pneumonia, ageusia/anosmia, and dry cough compared to control healthy subjects. Conclusion: We concluded that hypomethylated HeyL promoter in Egyptian population may facilitate the binding of transcription factors to their binding sites, thus enhancing its regulatory action on the blood, pulmonary epithelium, and nerves cells in contrast to full methylated one that was published in GenBank; thus, addition of demethylating agents to the treatment protocol of COVID-19 may improve the clinical outcomes. Administration of therapy must be based on determination of methylation status of HeyL, a novel prognostic marker for severe illness in COVID-19 patients.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , COVID-19 , Repressor Proteins , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , COVID-19/genetics , DNA Methylation , Egypt/epidemiology , Humans , Promoter Regions, Genetic , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...