Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Viruses ; 16(5)2024 05 18.
Article in English | MEDLINE | ID: mdl-38793687

ABSTRACT

Tomato fruit blotch virus (ToFBV) (Blunervirus solani, family Kitaviridae) was firstly identified in Italy in 2018 in tomato plants that showed the uneven, blotchy ripening and dimpling of fruits. Subsequent High-Throughput Sequencing (HTS) analysis allowed ToFBV to be identified in samples collected in Australia, Brazil, and several European countries, and its presence in tomato crops was dated back to 2012. In 2023, the virus was found to be associated with two outbreaks in Italy and Belgium, and it was included in the EPPO Alert list as a potential new threat for tomato fruit production. Many epidemiologic features of ToFBV need to be still clarified, including transmission. Aculops lycopersici Massee (Acariformes: Eriophyoidea), the tomato russet mite (TRM), is a likely candidate vector, since high population densities were found in most of the ToFBV-infected tomato cultivations worldwide. Real-time RT-PCR tests for ToFBV detection and TRM identification were developed, also as a duplex assay. The optimized tests were then transferred to an RT-ddPCR assay and validated according to the EPPO Standard PM 7/98 (5). Such sensitive, reliable, and validated tests provide an important diagnostic tool in view of the probable threat posed by this virus-vector system to solanaceous crops worldwide and can contribute to epidemiological studies by simplifying the efficiency of research. To our knowledge, these are the first molecular methods developed for the simultaneous detection and identification of ToFBV and TRM.


Subject(s)
Mites , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Plant Diseases/virology , Animals , Mites/virology , Plant Viruses/isolation & purification , Plant Viruses/genetics , Fruit/virology , Crops, Agricultural/virology , High-Throughput Nucleotide Sequencing/methods , Real-Time Polymerase Chain Reaction/methods
2.
Plants (Basel) ; 12(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37836254

ABSTRACT

Hop (Humulus lupulus L.) is a minor ingredient in the beer production but has a strong influence on the beer quality due to the high chemical complexity of the cones used in brewing. One of the major factors that can severely affect the chemical composition of the hop cones and their marketability is the presence of viral infections in the plant. Amongst the five major hop viruses, three belong to the Carlavirus genus: hop mosaic virus (HpMV), hop latent virus (HpLV), and American hop latent virus (AHLV). The occurrence of carlaviruses on hop germplasm in Italy was firstly recorded in 2017 but, in that context, a generic detection was only performed and no information on the infecting Carlavirus species was provided. To fill this gap, 51 hop samples previously found infected by carlaviruses were analysed by RT-PCR employing primer pairs specific for the coat protein (CP) of HpMV, HpLV and AHLV, respectively. HpLV resulted largely prevalent as it was detected in 96.1% of tested samples whereas for HpMV and AHLV an infection rate of 5.9% and 3.9% was recorded, respectively. CP nucleotide sequences from 13 selected virus isolates were obtained and analysed; moreover, the complete genome sequence of 7 isolates was obtained by using high throughput sequencing (HTS). Phylogenetic analysis showed close relationships among isolates from different geographical origin, including European and non-European countries, according to the worldwide movement of hop germplasm due to global trade. This is the first report of HpMV, HpLV and AHLV on hop germplasm in Italy.

3.
Biosensors (Basel) ; 13(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37232905

ABSTRACT

Lab-on-Chip (LoC) devices for performing real-time PCR are advantageous compared to standard equipment since these systems allow to conduct in-field quick analysis. The development of LoCs, where the components for performing the nucleic acid amplification are all integrated, can be an issue. In this work, we present a LoC-PCR device where thermalization, temperature control and detection elements are all integrated on a single glass substrate named System-on-Glass (SoG) obtained using metal thin-film deposition. By using a microwell plate optically coupled with the SoG, real-time reverse transcriptase PCR of RNA extracted from both a plant and human virus has been carried out in the developed LoC-PCR device. The limit of detection and time of analysis for the detection of the two viruses by using the LoC-PCR were compared with those achieved by standard equipment. The results showed that the two systems can detect the same concentration of RNA; however, the LoC-PCR performs the analysis in half of the time compared to the standard thermocycler, with the advantage of the portability, leading to a point-of-care device for several diagnostic applications.


Subject(s)
Lab-On-A-Chip Devices , Viruses , Humans , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , RNA, Viral/analysis
4.
Plants (Basel) ; 12(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176860

ABSTRACT

Peach latent mosaic viroid (PLMVd) is an important pathogen that causes disease in peaches. Control of this viroid remains problematic because most PLMVd variants are symptomless, and although there are many detection tests in use, the reliability of PCR-based methods is compromised by the complex, branched secondary RNA structure of the viroid and its genetic diversity. In this study, a duplex RT-qPCR method was developed and validated against two previously published single RT-qPCRs, which were potentially able to detect all known PLMVd variants when used in tandem. In addition, in order to simplify the sample preparation, rapid-extraction protocols based on the use of crude sap or tissue printing were compared with commercially available RNA purification kits. The performance of the new procedure was evaluated in a test performance study involving five participant laboratories. The new method, in combination with rapid-sample-preparation approaches, was demonstrated to be feasible and reliable, with the advantage of detecting all different PLMVd isolates/variants assayed in a single reaction, reducing costs for routine diagnosis.

5.
J Fungi (Basel) ; 9(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36983460

ABSTRACT

For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis progression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when inoculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these Botryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed.

6.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893146

ABSTRACT

Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.

7.
Front Microbiol ; 13: 862075, 2022.
Article in English | MEDLINE | ID: mdl-35615512

ABSTRACT

Biochar is a rich carbon product obtained by pyrolysis of biomass under a limited supply of oxygen. It is composed mainly of aromatic molecules, but its agronomic value is hard to evaluate and difficult to predict due to its great variable characteristics depending on the type of starting biomass and the conditions of pyrolysis. Anyway, it could be used as soil amendment because it increases the soil fertility of acidic soils, increases the agricultural productivity, and seems to provide protection against some foliar and soilborne diseases. In this study, the effects of biochar, obtained from olive pruning, have been evaluated on tomato seedlings growth and on their response to systemic agents' infection alone or added with beneficial microorganisms (Bacillus spp. and Trichoderma spp.). First, experimental data showed that biochar seems to promote the development of the tomato seedlings, especially at concentrations ranging from 1 to 20% (w/w with peat) without showing any antimicrobial effects on the beneficial soil bacteria at the tomato rhizosphere level and even improving their growth. Thus, those concentrations were used in growing tomato plants experimentally infected with tomato spotted wilt virus (TSWV) and potato spindle tuber viroid (PSTVd). The biochar effect was estimated by evaluating three parameters, namely, symptom expression, number of infected plants, and pathogen quantification, using RT-qPCR technique and -ΔΔCt analysis. Biochar at 10-15% and when added with Trichoderma spp. showed that it reduces the replication of PSTVd and the expression of symptoms even if it was not able to block the start of infection. The results obtained on TSWV-infected plants suggested that biochar could contribute to reducing both infection rate and virus replication. For systemic viral agents, such as PSTVd and TSWV, there are no curative control methods, and therefore, the use of prevention means, as can be assumed the use biochar, for example, in the nursery specialized in horticultural crops, can be of great help. These results can be an encouraging starting point to introduce complex biochar formulates among the sustainable managing strategies of plant systemic diseases.

8.
Pathogens ; 11(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35215150

ABSTRACT

In 2020, a test performance study (TPS) for the specific detection of tomato brown rugose fruit virus (ToBRFV) was organized in the frame of the H2020 Valitest project. Since no validated tests were available, all the protocols reported in the literature were at first screened, performing preliminary studies in accordance with the EPPO standard PM 7/98 (4). Five molecular tests, two conventional RT-PCR and three real-time RT-PCR were found to be suitable and were included in the TPS. Thirty-four laboratories from 18 countries worldwide took part in TPS, receiving a panel of 22 blind samples. The panel consisted of sap belonging to symptomatic or asymptomatic leaves of Solanum lycopersicum and Capsicum annuum. The results returned by each laboratory were analyzed and diagnostic parameters were assessed for each test: reproducibility, repeatability, analytical sensitivity, diagnostic sensitivity and diagnostic specificity. All the evaluated tests resulted in being reliable in detecting ToBRFV and were included in an EPPO Standard PM 7/146-Diagnostics.

9.
Pathogens ; 11(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35056001

ABSTRACT

Olive trees are infected and damaged by Botryosphaeriaceae fungi in various countries. The botryosphaeriaceous fungus Neofusicoccum mediterraneum is highly aggressive and is a major concern for olive groves in Spain and California (USA), where it causes 'branch and twig dieback' characterized by wood discoloration, bark canker, and canopy blight. During surveys of olive groves in Apulia (southern Italy), we noticed that-in some areas-trees were heavily affected by severe branch and twig dieback. In addition, chlorosis and the appearance of red-bronze patches on the leaf preceded the wilting of the foliage, with necrotic leaves persisting on the twigs. Given the severity of the manifestation in zones also subject to olive quick decline syndrome (OQDS) caused by Xylella fastidiosa subsp. pauca, we investigated the etiology and provide indications for differentiating the symptoms from OQDS. Isolation from diseased wood samples revealed a mycete, which was morphologically and molecularly identified as N. mediterraneum. The pathogenicity tests clearly showed that this fungus is able to cause the natural symptoms. Therefore, also considering the low number of tested samples, N. mediterraneum is a potential causal agent of the observed disease. Specifically, inoculation of the twigs caused complete wilting in two to three weeks, while inoculation at the base of the stem caused severe girdling wedge-shaped cankers. The growth rate of the fungus in in vitro tests was progressively higher from 10 to 30 °C, failing to grow at higher temperatures, but keeping its viability even after prolonged exposure at 50 °C. The capacity of the isolate to produce catenulate chlamydospores, which is novel for the species, highlights the possibility of a new morphological strain within N. mediterraneum. Further investigations are ongoing to verify whether additional fungal species are involved in this symptomatology.

10.
Methods Mol Biol ; 2316: 163-179, 2022.
Article in English | MEDLINE | ID: mdl-34845694

ABSTRACT

Amplification of different nucleic acid targets in the same reaction (multiplex polymerase chain reaction) is challenging but an extremely useful tool especially for viroid diagnosis. In the amplification mixtures, several pairs of primers work together in the same conditions to detect different targets. Here, we describe the development and use of a multiplex reverse transcription polymerase chain reaction protocol highlighting the most crucial factors that can significantly affect the quality of the method. First, particular attention must be paid to primer design. Then, the amplification mixture and temperature conditions must be calibrated precisely to avoid cross reactivity or loss in sensitivity. Finally, the detection system of the amplification results must allow a specific identification of the amplified target(s).


Subject(s)
Multiplex Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Viroids/genetics
11.
J Virol Methods ; 147(1): 118-26, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17920703

ABSTRACT

Plum pox virus (PPV) is the most damaging viral pathogen of stone fruits. The detection and identification of its strains are therefore of critical importance to plant quarantine and certification programs. Existing methods to screen strains of PPV suffer from significant limitations such as the simultaneous detection and genotyping of several strains of PPV in samples infected with different isolates of the virus. A genomic strategy for PPV screening based on the viral nucleotide sequence was developed to enable the detection and genotyping of the virus from infected plant tissue or biological samples. The basis of this approach is a long 70-mer oligonucleotide DNA microarray capable of simultaneously detecting and genotyping PPV strains. Several 70-mer oligonucleotide probes were specific for the detection and genotyping of individual PPV isolates to their strains. Other probes were specific for the detection and identification of two or three PPV strains. One probe (universal), derived from the genome highly conserved 3' non-translated region, detected all individual strains of PPV. This universal PPV probe, combined with probes specific for each known strain, could be used for new PPV strain discovery. Finally, indirect fluorescent labeling of cDNA with cyanine after cDNA synthesis enhanced the sensitivity of the virus detection without the use of the PCR amplification step. The PPV microarray detected and identified efficiently the PPV strains in PPV-infected peach, apricot and Nicotiana benthamiana leaves. This PPV detection method is versatile, and enables the simultaneous detection of plant pathogens.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Plant Diseases/virology , Plum Pox Virus/genetics , Plum Pox Virus/isolation & purification , DNA Probes , Genotype , Nucleic Acid Hybridization , Plant Leaves/virology , Plum Pox Virus/classification
SELECTION OF CITATIONS
SEARCH DETAIL