Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(33): 23330-23337, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39110895

ABSTRACT

Mustard gas causes irreversible damage upon inhalation or contact with the human body. Consequently, the development of adsorbents for effective interception of mustard gas at low concentrations and high flow rates is an urgent necessity. Here we report a stable porous pillar[5]arene-containing metal-organic framework (MOF) based on zirconium (EtP5-Zr-scu), demonstrating that embedding pillar[5]arene units in MOFs can provide specific binding sites for efficient adsorption of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). EtP5-Zr-scu achieves a higher capacity and more rapid adsorption compared to its counterpart without embedded pillar[5]arene units (H4tcpt-Zr-scu) and perethylated pillar[5]arene (EtP5) alone. Single crystal X-ray diffraction and solid-state nuclear magnetic resonance reveal that the enhanced performance of EtP5-Zr-scu is derived from the host-guest complexation between CEES and pillar[5]arene moieties. Moreover, breakthrough experiments confirmed that the interception performance of EtP5-Zr-scu against CEES (800 ppm, 120 mL/min) was significantly improved (566 min/g) compared with H4tcpt-Zr-scu (353 min/g) and EtP5 (0.873 min/g), attributed to the integration of open channels with specific recognition sites. This work marks a significant advancement in the development of macrocycle-incorporated crystalline framework materials with recognition sites for the efficient capture of guest molecules.

2.
Org Lett ; 26(29): 6220-6224, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39018115

ABSTRACT

Herein, a novel pillararene-based cavitand with fixed planar chirality was synthesized by the SuFEx reaction. As demonstrated by single crystal X-ray analysis, host-guest capsules involving this cavitand and linear alkanes with specific lengths are observed in the solid state. The formation of each capsule is driven by hydrogen bonding interactions between a linear alkane molecule and two cavitand molecules, as well as noncovalent interactions between the two cavitand molecules in this capsule.

3.
Ecol Lett ; 27(6): e14447, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844351

ABSTRACT

Host specialization plays a critical role in the ecology and evolution of plant-microbe symbiosis. Theory predicts that host specialization is associated with microbial genome streamlining and is influenced by the abundance of host species, both of which can vary across latitudes, leading to a latitudinal gradient in host specificity. Here, we quantified the host specificity and composition of plant-bacteria symbioses on leaves across 329 tree species spanning a latitudinal gradient. Our analysis revealed a predominance of host-specialized leaf bacteria. The degree of host specificity was negatively correlated with bacterial genome size and the local abundance of host plants. Additionally, we found an increased host specificity at lower latitudes, aligning with the high prevalence of small bacterial genomes and rare host species in the tropics. These findings underscore the importance of genome streamlining and host abundance in the evolution of host specificity in plant-associated bacteria along the latitudinal gradient.


Subject(s)
Genome Size , Host Specificity , Plant Leaves , Symbiosis , Plant Leaves/microbiology , Bacteria/genetics , Bacteria/classification , Genome, Bacterial , Trees/microbiology
4.
Oecologia ; 205(2): 295-306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824461

ABSTRACT

Understanding how different mechanisms act and interact in shaping communities and ecosystems is essential to better predict their future with global change. Disturbance legacy, abiotic conditions, and biotic interactions can simultaneously influence tree growth, but it remains unclear what are their relative contributions and whether they have additive or interactive effects. We examined the separate and joint effects of disturbance intensity, soil conditions, and neighborhood crowding on tree growth in 10 temperate forests in northeast China. We found that disturbance was the strongest driver of tree growth, followed by neighbors and soil. Specifically, trees grew slower with decreasing initial disturbance intensity, but with increasing neighborhood crowding, soil pH and soil total phosphorus. Interestingly, the decrease in tree growth with increasing soil pH and soil phosphorus was steeper with high initial disturbance intensity. Testing the role of species traits, we showed that fast-growing species exhibited greater maximum tree size, but lower wood density and specific leaf area. Species with lower wood density grew faster with increasing initial disturbance intensity, while species with higher specific leaf area suffered less from neighbors in areas with high initial disturbance intensity. Our study suggests that accounting for both individual and interactive effects of multiple drivers is crucial to better predict forest dynamics.


Subject(s)
Ecosystem , Forests , Soil , Trees , Trees/growth & development , China
5.
Cancer Res Treat ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38726508

ABSTRACT

Purpose: Molecular residual disease (MRD) is a promising biomarker in colorectal cancer (CRC) for prognosis and guiding treatment, while the whole-exome sequencing (WES) based tumor-informed assay is standard for evaluating MRD based on circulating tumor DNA (ctDNA). In this study, we assessed the feasibility of a fixed-panel for evaluating MRD in CRC. Materials and Methods: 75 patients with resectable stage I-III CRC were enrolled. Tumor tissues obtained by surgery, and pre-operative and post-operative day 7 blood samples were collected. The ctDNA was evaluated using the tumor-agnostic and tumor-informed fixed assays, as well as the WES-based and panel-based personalized assays in randomly selected patients. Results: The tumor-informed fixed assay had a higher pre-operative positive rate than the tumor-agnostic assay (73.3% vs 57.3%). The pre-op ctDNA status failed to predict disease-free survival (DFS) in either of the fixed assays, while the tumor-informed fixed assay-determined post-op ctDNA positivity was significantly associated with worse DFS (HR, 20.74, 95%CI 7.19-59.83; p<0.001), which was an independent predictor by multivariable analysis (HR, 28.57, 95%CI 7.10-114.9; p<0.001). Sub-cohort analysis indicated the WES-based personalized assay had the highest pre-operative positive rate (95.1%). The two personalized assays and the tumor-informed fixed assay demonstrated same results in post-op landmark (HR, 26.34, 95%CI, 6.01-115.57; p<0.001), outperforming the tumor-agnostic fixed panel (HR, 3.04, 95%CI, 0.94-9.89; p=0.052). Conclusion: Our study confirmed the prognostic value of the ctDNA positivity at post-op day 7 by the tumor-informed fixed panel. The tumor-informed fixed panel may be a cost-effective method to evaluate MRD, which warrants further studies in future.

6.
J Fungi (Basel) ; 10(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786665

ABSTRACT

This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant-soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant-soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant-soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant-soil consortia.

7.
Chem Commun (Camb) ; 60(44): 5743-5746, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743417

ABSTRACT

Two anionic tetrahedral cages were self-assembled as the only observable products in weakly basic water via imine condensation. The success of the high-yielding formation of the cages in water relies on (i) multivalency enhancing the stability of the imine bond and affording these cages water compatibility and (ii) a guest template with a complementary size and geometry that provides a hydrophobic driving force by occupying the corresponding cage cavity. When all four precursors, namely two trisaldehydes and two trisamines, were combined in water, narcissistic self-sorting occurred when both guest templates were present. In organic media where the hydrophobic effect is absent, narcissistic self-sorting did not occur in the analogous cage systems, confirming the importance of guest templates.

8.
J Leukoc Biol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700080

ABSTRACT

Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors, many innate immune and local apoptosis related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early ß-amyloid pathology. But microglia are not involved in synapse loss at late ß-amyloid stages. Phagocytic microglia also engulfment synapses in complement dependent way in schizophrenia, anxiety and stress. Besides, phagocytic astrocytes engulf synapses in a MEGF10 dependent way during visual development, memory and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminating excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.

9.
Biomed Opt Express ; 15(4): 2433-2450, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633075

ABSTRACT

In recent years, imaging photoplethysmograph (iPPG) pulse signals have been widely used in the research of non-contact blood pressure (BP) estimation, in which BP estimation based on pulse features is the main research direction. Pulse features are directly related to the shape of pulse signals while iPPG pulse signals are easily disturbed during the extraction process. To mitigate the impact of pulse feature distortion on BP estimation, it is necessary to eliminate interference while retaining valuable shape details in the iPPG pulse signal. Contact photoplethysmograph (cPPG) pulse signals measured at rest can be considered as the undisturbed reference signal. Transforming the iPPG pulse signal to the corresponding cPPG pulse signal is a method to ensure the effectiveness of shape details. However, achieving the required shape accuracy through direct transformation from iPPG to the corresponding cPPG pulse signals is challenging. We propose a method to mitigate this challenge by replacing the reference signal with an average cardiac cycle (ACC) signal, which can approximately represent the shape information of all cardiac cycles in a short time. A neural network using multi-scale convolution and self-attention mechanisms is developed for this transformation. Our method demonstrates a significant improvement in the maximal information coefficient (MIC) between pulse features and BP values, indicating a stronger correlation. Moreover, pulse signals transformed by our method exhibit enhanced performance in BP estimation using different model types. Experiments are conducted on a real-world database with 491 subjects in the hospital, averaging 60 years of age.

10.
J Neuroinflammation ; 21(1): 111, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685040

ABSTRACT

BACKGROUND: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1ß (IL-1ß) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.


Subject(s)
Becaplermin , Diet, High-Fat , Endothelial Cells , Hippocampus , Metabolic Syndrome , Microglia , Transcytosis , Animals , Mice , Becaplermin/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Transcytosis/physiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Microglia/metabolism , Microglia/pathology , Diet, High-Fat/adverse effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice, Transgenic , Mice, Inbred C57BL , Mice, Knockout , Male , Bone and Bones/metabolism , Bone and Bones/pathology
12.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396963

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder with a prolonged prodromal phase. Higher urinary bis(monoacylglycerol)phosphate (BMP) levels associate with LRRK2 (leucine-rich repeat kinase 2) and GBA1 (glucocerebrosidase) mutations, and are considered as potential noninvasive biomarkers for predicting those mutations and PD progression. However, their reliability has been questioned, with inadequately investigated genetics, cohorts, and population. In this study, multiple statistical hypothesis tests were employed on urinary BMP levels and sequences of 90 PD-risk single nucleotide polymorphisms (SNPs) from Parkinson's Progression Markers Institution (PPMI) participants. Those SNPs were categorized into four groups based on their impact on BMP levels in various cohorts. Variants rs34637584 G/A and rs34637584 A/A (LRRK2 G2019S) were identified as the most relevant on increasing urinary BMP levels in the PD cohort. Meanwhile, rs76763715 T/T (GBA1) was the primary factor elevating BMP levels in the prodromal cohort compared to its T/C and C/C variants (N370S) and the PD cohort. Proteomics analysis indicated the changed transport pathways may be the reasons for elevated BMP levels in prodromal patients. Our findings demonstrated that higher urinary BMP levels alone were not reliable biomarkers for PD progression or gene mutations but might serve as supplementary indicators for early diagnosis and treatment.


Subject(s)
Lysophospholipids , Monoglycerides , Parkinson Disease , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Mutation , Biomarkers
13.
Int J Genomics ; 2024: 2277956, 2024.
Article in English | MEDLINE | ID: mdl-38410787

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive genetic disease characterized by clinical symptoms such as eczema, thrombocytopenia with small platelets, immune deficiency, prone to autoimmune diseases, and malignant tumors. This disease is caused by mutations of the WAS gene encoding WASprotein (WASP). The locus and type of mutations of the WAS gene and the expression quantity of WASP were strongly correlated with the clinical manifestations of patients. We found a novel mutation in the WAS gene (c.931 + 5G > C), which affected splicing to produce three abnormal mRNA, resulting in an abnormally truncated WASP. This mutation led to a reduction but not the elimination of the normal WASP population, resulting in causes X-linked thrombocytopenia (XLT) with mild clinical manifestations. Our findings revealed the pathogenic mechanism of this mutation.

14.
Aging (Albany NY) ; 16(5): 4423-4444, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38412319

ABSTRACT

BACKGROUND: SLC20A1, a prominent biomarker in several cancers, has been understudied in its predictive role in head and neck squamous cell carcinoma (HNSCC). METHODS: The Cancer Genome Atlas (TCGA) database was used to analyze HNSCC prognosis, SLC20A1 overexpression, and clinical characteristics. Quantitative real-time PCR and Western blot analysis confirmed SLC20A1 expression in HNSCC tissues. Cellular behaviors such as invasion, migration and proliferation were assessed using Transwell, wound healing and colony formation assays. Immune system data were obtained from the Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore biological parameters and pathways associated with SLC20A1 overexpression in HNSCC. RESULTS: In 499 HNSCC samples, SLC20A1 mRNA and protein expression were significantly higher than in 44 normal counterparts, confirmed by 24 paired samples. Patients were categorized based on SLC20A1 levels, survival status and overall survival. High SLC20A1 expression correlated with advanced T stage, increased risk scores and decreased survival. Stage, age and SLC20A1 expression emerged as independent predictive factors for HNSCC in univariate and multivariate analyses. SLC20A1 overexpression, which is associated with poor prognosis, may influence cell proliferation, migration, invasion, chemotherapy response, and the immune milieu. CONCLUSIONS: SLC20A1 overexpression in HNSCC, characterized by increased cellular invasion, migration and proliferation, is a potential prognostic biomarker and therapeutic response indicator.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Prognosis , Head and Neck Neoplasms/genetics , Prospective Studies , Biomarkers, Tumor/genetics , Sodium-Phosphate Cotransporter Proteins, Type III
15.
Theranostics ; 14(4): 1683-1700, 2024.
Article in English | MEDLINE | ID: mdl-38389839

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is an insidious, rapidly progressing malignancy of the gastrointestinal tract. Due to its dense fibrous stroma and complex tumor microenvironment, neither of which is sensitive to radiotherapy, pancreatic adenocarcinoma is one of the malignancies with the poorest prognosis. Therefore, detailed elucidation of the inhibitory microenvironment of PDAC is essential for the development of novel therapeutic strategies. Methods: We analyzed the association between cancer-associated fibroblasts (CAFs) and resistance to ferroptosis in PDAC using conditioned CAF medium and co-culture of pancreatic cancer cells. Abnormal cysteine metabolism was observed in CAFs using non-targeted metabolomics analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The regulatory effects of cysteine were investigated in PDAC cells through measurement of cell cloning, cell death, cell function, and EdU assays. The effects of exogenous cysteine intake were examined in a mouse xenograft model and the effects of the cysteine pathway on ferroptosis in PDAC were investigated by western blotting, measurement of glutathione and reactive oxygen species levels, among others. Results: It was found that CAFs played a critical role in PDAC metabolism by secreting cysteine, which could increase tumor resistance to ferroptosis. A previously unrecognized function of the sulfur transfer pathway in CAFs was identified, which increased the extracellular supply of cysteine to support glutathione synthesis and thus inducing ferroptosis resistance. Cysteine secretion by CAFs was found to be mediated by the TGF-ß/SMAD3/ATF4 signaling axis. Conclusion: Taken together, the findings demonstrate a novel metabolic relationship between CAFs and cancer cells, in which cysteine generated by CAFs acts as a substrate in the prevention of oxidative damage in PDAC and thus suggests new therapeutic targets for PDAC.


Subject(s)
Adenocarcinoma , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Ferroptosis , Pancreatic Neoplasms , Humans , Mice , Animals , Pancreatic Neoplasms/pathology , Cysteine/metabolism , Cancer-Associated Fibroblasts/metabolism , Adenocarcinoma/pathology , Chromatography, Liquid , Tandem Mass Spectrometry , Carcinoma, Pancreatic Ductal/pathology , Glutathione/metabolism , Tumor Microenvironment
16.
Arch Gerontol Geriatr ; 117: 105223, 2024 02.
Article in English | MEDLINE | ID: mdl-37832465

ABSTRACT

BACKGROUND AND AIMS: Multiple limitations often co-occur and accumulate, leading to subsequent function decline. However, there is a scarcity of longitudinal studies examining the progression of physical function among the general population of older adults in China. This study aimed to define typical physical function status and its change, which were characterized by the coexistence and accumulation of diverse limitations targeting a Chinese sample of older adults. METHODS: This study used the three recent public data waves of the Chinese Longitudinal Healthy Longevity Survey during a 6-year follow-up period. 9765 individuals who were over 65 and participated in the 2011 survey were included. Latent transition analysis was used to identify the latent physical function status and explore the transition of older adults among different latent statuses. RESULTS: Seven latent statuses of physical function were identified, with visual impairment and related limitations being particularly prevalent among older adults. Upper limb mobility appeared to be a differentiated indicator of physical functional status. Physical function decline mainly started with the limitations in squatting, carrying weights and walking, then to the status with intact upper limb mobility and hearing function only, or converted directly into the latter, then to complete dysfunction. CONCLUSIONS: Our findings suggest some indicative limitations and critical steps in the process of functional decline among older adults. These results may provide insight for researchers and policymakers to develop tailored preventive and rehabilitation care and provide support for physically limited elderly according to their latent status and course of functional decline.


Subject(s)
Asian People , Longevity , Humans , Aged , Longitudinal Studies , Walking , Physical Examination , China/epidemiology
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-663405

ABSTRACT

Microneedle is a painless and minimally invasive transdermal drug delivery. It can enhance the permeability of skin for macromolecular drugs by puncturing and creating a micron-level drug delivery channel in the skin. The biodegradable microneedles aim to solve the problem that nondegradable-material microneedles may break under skin and cause adverse reaction. This article pro?vides an overview of the characteristics of biodegradable microneedles,the biodegradable materials used,its recent research progress, the development status and the tendency.

18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-340786

ABSTRACT

<p><b>OBJECTIVE</b>To develop a tight tetracycline-controlled HCV-C double transgenic mouse model.</p><p><b>METHODS</b>By crossbreeding of ApoE-rtTA-tTS transgenic mice with TRE-HCV-C transgenic mice, the double transgenic mice were produced in the F1 generation. The presence of HCV-C and tTS gene in the F1 generation was confirmed by PCR, followed by further identification and quantification of the transgene using Southern blot hybridization. The expression of HCV-C in the liver of the mouse model was detected immunohistochemically.</p><p><b>RESULTS AND CONCLUSION</b>Two transgenic mice were obtained, which contained ApoE-rtTA-tTS and TRE-HCV-C genes in the genome. Five founders contained HCV-C gene as confirmed by PCR and Southern blot hybridization. The tight tetracycline-controlled system may facilitate further study of HCV-C gene expression and gene therapy of hepatic cellular carcinoma.</p>


Subject(s)
Animals , Female , Male , Mice , Apolipoproteins E , Genetics , Blotting, Southern , Breeding , Crosses, Genetic , Gene Expression Regulation, Viral , Hepacivirus , Genetics , Allergy and Immunology , Hepatitis C Antigens , Genetics , Allergy and Immunology , Mice, Transgenic , Polymerase Chain Reaction , Tetracycline , Pharmacology , Trans-Activators , Genetics , Viral Core Proteins , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL