Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12823, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834839

ABSTRACT

The prevalence of cardiovascular disease (CVD) has surged in recent years, making it the foremost cause of mortality among humans. The Electrocardiogram (ECG), being one of the pivotal diagnostic tools for cardiovascular diseases, is increasingly gaining prominence in the field of machine learning. However, prevailing neural network models frequently disregard the spatial dimension features inherent in ECG signals. In this paper, we propose an ECG autoencoder network architecture incorporating low-rank attention (LRA-autoencoder). It is designed to capture potential spatial features of ECG signals by interpreting the signals from a spatial perspective and extracting correlations between different signal points. Additionally, the low-rank attention block (LRA-block) obtains spatial features of electrocardiogram signals through singular value decomposition, and then assigns these spatial features as weights to the electrocardiogram signals, thereby enhancing the differentiation of features among different categories. Finally, we utilize the ResNet-18 network classifier to assess the performance of the LRA-autoencoder on both the MIT-BIH Arrhythmia and PhysioNet Challenge 2017 datasets. The experimental results reveal that the proposed method demonstrates superior classification performance. The mean accuracy on the MIT-BIH Arrhythmia dataset is as high as 0.997, and the mean accuracy and F 1 -score on the PhysioNet Challenge 2017 dataset are 0.850 and 0.843.


Subject(s)
Electrocardiography , Neural Networks, Computer , Electrocardiography/methods , Humans , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Machine Learning , Signal Processing, Computer-Assisted , Algorithms , Cardiovascular Diseases/diagnosis
2.
Biomed Res Int ; 2021: 5531940, 2021.
Article in English | MEDLINE | ID: mdl-34513992

ABSTRACT

Accurate recognition of progressive mild cognitive impairment (MCI) is helpful to reduce the risk of developing Alzheimer's disease (AD). However, it is still challenging to extract effective biomarkers from multivariate brain structural magnetic resonance imaging (MRI) features to accurately differentiate the progressive MCI from stable MCI. We develop novel biomarkers by combining subspace learning methods with the information of AD as well as normal control (NC) subjects for the prediction of MCI conversion using multivariate structural MRI data. Specifically, we first learn two projection matrices to map multivariate structural MRI data into a common label subspace for AD and NC subjects, where the original data structure and the one-to-one correspondence between multiple variables are kept as much as possible. Afterwards, the multivariate structural MRI features of MCI subjects are mapped into a common subspace according to the projection matrices. We then perform the self-weighted operation and weighted fusion on the features in common subspace to extract the novel biomarkers for MCI subjects. The proposed biomarkers are tested on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results indicate that our proposed biomarkers outperform the competing biomarkers on the discrimination between progressive MCI and stable MCI. And the improvement from the proposed biomarkers is not limited to a particular classifier. Moreover, the results also confirm that the information of AD and NC subjects is conducive to predicting conversion from MCI to AD. In conclusion, we find a good representation of brain features from high-dimensional MRI data, which exhibits promising performance for predicting conversion from MCI to AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Cognitive Dysfunction/pathology , Image Processing, Computer-Assisted/methods , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/diagnosis , Biomarkers/analysis , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Databases, Factual , Disease Progression , Female , Humans , Image Interpretation, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...