Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 76
1.
Traffic ; 25(4): e12934, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613404

Alzheimer's disease (AD) pathology is characterized by amyloid beta (Aß) plaques and dysfunctional autophagy. Aß is generated by sequential proteolytic cleavage of amyloid precursor protein (APP), and the site of intracellular APP processing is highly debated, which may include autophagosomes. Here, we investigated the involvement of autophagy, including the role of ATG9 in APP intracellular trafficking and processing by applying the RUSH system, which allows studying the transport of fluorescently labeled mCherry-APP-EGFP in a systematic way, starting from the endoplasmic reticulum. HeLa cells, expressing the RUSH mCherry-APP-EGFP system, were investigated by live cell imaging, immunofluorescence, and Western blot. We found that mCherry-APP-EGFP passed through the Golgi faster in ATG9 knockout cells. Furthermore, ATG9 deletion shifted mCherry-APP-EGFP from early endosomes and lysosomes toward the plasma membrane concomitant with reduced endocytosis. Importantly, this alteration in mCherry-APP-EGFP transport resulted in increased secreted mCherry-soluble APP and C-terminal fragment-EGFP. These effects were also phenocopied by pharmacological inhibition of ULK1, indicating that autophagy is regulating the intracellular trafficking and processing of APP. These findings contribute to the understanding of the role of autophagy in APP metabolism and could potentially have implications for new therapeutic approaches for AD.


Alzheimer Disease , Amyloid beta-Protein Precursor , Humans , Amyloid beta-Peptides , HeLa Cells , Biological Transport , Autophagy
2.
Traffic ; 24(11): 546-548, 2023 11.
Article En | MEDLINE | ID: mdl-37581229

TransitID is a new methodology based on proximity labeling allowing for the study of protein trafficking a the proteome scale.


Proteome , Proteomics , Proteome/metabolism , Proteomics/methods , Protein Transport
3.
Trends Cell Biol ; 33(12): 1049-1061, 2023 12.
Article En | MEDLINE | ID: mdl-37236902

Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.


Mechanotransduction, Cellular , Organelles , Humans , Organelles/metabolism , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Cell Membrane/metabolism
4.
PLoS Comput Biol ; 19(4): e1010995, 2023 04.
Article En | MEDLINE | ID: mdl-37068117

Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.


Breast Neoplasms , Membrane Proteins , Humans , Female , Membrane Proteins/metabolism , Golgi Matrix Proteins/metabolism , Breast Neoplasms/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/pathology
5.
EMBO Mol Med ; 15(4): e16834, 2023 04 11.
Article En | MEDLINE | ID: mdl-36916446

Osteogenesis imperfecta (OI) is a genetically and clinically heterogeneous disorder characterized by bone fragility and reduced bone mass generally caused by defects in type I collagen structure or defects in proteins interacting with collagen processing. We identified a homozygous missense mutation in SEC16B in a child with vertebral fractures, leg bowing, short stature, muscular hypotonia, and bone densitometric and histomorphometric features in keeping with OI with distinct ultrastructural features. In line with the putative function of SEC16B as a regulator of trafficking between the ER and the Golgi complex, we showed that patient fibroblasts accumulated type I procollagen in the ER and exhibited a general trafficking defect at the level of the ER. Consequently, patient fibroblasts exhibited ER stress, enhanced autophagosome formation, and higher levels of apoptosis. Transfection of wild-type SEC16B into patient cells rescued the collagen trafficking. Mechanistically, we show that the defect is a consequence of reduced SEC16B expression, rather than due to alterations in protein function. These data suggest SEC16B as a recessive candidate gene for OI.


Collagen Type I , Osteogenesis Imperfecta , Child , Humans , Collagen/genetics , Collagen Type I/genetics , Collagen Type I/chemistry , Collagen Type I/metabolism , Mutation , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Endoplasmic Reticulum Stress
7.
EMBO J ; 41(18): e110596, 2022 09 15.
Article En | MEDLINE | ID: mdl-35938214

Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.


Mechanotransduction, Cellular , Monomeric GTP-Binding Proteins , Biological Transport , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Monomeric GTP-Binding Proteins/metabolism , Protein Transport/physiology
8.
Hepatology ; 76(5): 1345-1359, 2022 11.
Article En | MEDLINE | ID: mdl-35253915

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Humans , Animals , Toll-Like Receptor 2 , Nerve Growth Factors/metabolism , Toll-Like Receptor 3 , Toll-Like Receptor 6 , Tumor Suppressor Proteins/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents , RNA, Messenger , Amino Acids , Netrin Receptors
9.
Nat Commun ; 12(1): 6579, 2021 11 12.
Article En | MEDLINE | ID: mdl-34772920

Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.


Cell Nucleus/metabolism , Cytoplasm/metabolism , Huntingtin Protein/chemistry , Huntingtin Protein/metabolism , Neurons/metabolism , Animals , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/ultrastructure , Huntington Disease/metabolism , Intranuclear Inclusion Bodies/metabolism , Mice , Mice, Inbred C57BL , Peptides/chemistry , Protein Aggregation, Pathological , Proteome
10.
Traffic ; 22(10): 362-363, 2021 10.
Article En | MEDLINE | ID: mdl-34338403

In this article we discuss implications of the recent discovery of glycoRNAs found to be present at the cell surface of mammalian cells which was reported by Flynn et al. Cell 2021.


Polysaccharides , RNA , Animals , Cell Membrane/metabolism , Mammals/metabolism , Polysaccharides/metabolism
11.
Cancer Res ; 81(17): 4581-4593, 2021 09 01.
Article En | MEDLINE | ID: mdl-34158378

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9-based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI-refractory multiple myeloma. SIGNIFICANCE: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.


HIV Protease Inhibitors/pharmacology , Membrane Lipids , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Nelfinavir/pharmacology , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Genome , Glucose/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Lipidomics , Lipids/chemistry , Phospholipids/chemistry , Phosphorylation , Receptors, Adiponectin/metabolism , Signal Transduction
12.
J Cell Biol ; 220(6)2021 06 07.
Article En | MEDLINE | ID: mdl-33999114

Export from the ER is COPII-dependent. However, there is disagreement on the nature of the cargo-containing carriers that exit the ER. Two new studies from Shomron et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.201907224) and Weigel et al. (2021. Cell. https://doi.org/10.1016/j.cell.2021.03.035) present a new model, where COPII helps to select secretory cargo but does not coat the carriers leaving the ER.


COP-Coated Vesicles , Endoplasmic Reticulum , Biological Transport , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Protein Transport
13.
Cells ; 10(2)2021 02 22.
Article En | MEDLINE | ID: mdl-33671785

Cell migration is a fundamental biological process of key importance in health and disease. Advances in imaging techniques have paved the way to monitor cell motility. An ever-growing collection of computational tools to track cells has improved our ability to analyze moving cells. One renowned goal in the field is to provide tools that track cell movement as comprehensively and automatically as possible. However, fully automated tracking over long intervals of time is challenged by dividing cells, thus calling for a combination of automated and supervised tracking. Furthermore, after the emergence of various experimental tools to monitor cell-cycle phases, it is of relevance to integrate the monitoring of cell-cycle phases and motility. We developed CellMAPtracer, a multiplatform tracking system that achieves that goal. It can be operated as a conventional, automated tracking tool of single cells in numerous imaging applications. However, CellMAPtracer also allows adjusting tracked cells in a semiautomated supervised fashion, thereby improving the accuracy and facilitating the long-term tracking of migratory and dividing cells. CellMAPtracer is available with a user-friendly graphical interface and does not require any coding or programming skills. CellMAPtracer is compatible with two- and three-color fluorescent ubiquitination-based cell-cycle indicator (FUCCI) systems and allows the user to accurately monitor various migration parameters throughout the cell cycle, thus having great potential to facilitate new discoveries in cell biology.


Cell Tracking/methods , Cell Movement , Cell Proliferation , Humans
14.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article En | MEDLINE | ID: mdl-33573289

The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.


Biomarkers/analysis , Computational Biology/methods , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Cell Cycle/genetics , Datasets as Topic , Female , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Liposarcoma, Myxoid/diagnosis , Liposarcoma, Myxoid/genetics , Mice , Neoplastic Cells, Circulating/pathology , Software , Zebrafish
15.
J Cell Sci ; 133(18)2020 09 16.
Article En | MEDLINE | ID: mdl-32843575

While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of cells in which human ATG8 genes were tagged at their natural chromosomal locations with an N-terminal affinity epitope. This cellular resource was employed to map endogenous GABARAPL2 protein complexes using interaction proteomics. This approach identified the ER-associated protein and lipid droplet (LD) biogenesis factor ACSL3 as a stabilizing GABARAPL2-binding partner. GABARAPL2 bound ACSL3 in a manner dependent on its LC3-interacting regions, whose binding site in GABARAPL2 was required to recruit the latter to the ER. Through this interaction, the UFM1-activating enzyme UBA5 became anchored at the ER. Furthermore, ACSL3 depletion and LD induction affected the abundance of several ufmylation components and ER-phagy. Together these data allow us to define ACSL3 as a novel regulator of the enigmatic UFM1 conjugation pathway.


Lipid Droplets , Proteins , Autophagy , Autophagy-Related Protein 8 Family , Humans , Ubiquitin-Activating Enzymes
16.
FEBS J ; 287(19): 4198-4220, 2020 10.
Article En | MEDLINE | ID: mdl-32484316

Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.


Phosphoric Monoester Hydrolases , Proteins/metabolism , Animals , Humans
17.
J Immunol ; 204(8): 2133-2142, 2020 04 15.
Article En | MEDLINE | ID: mdl-32188759

It is becoming increasingly evident that reactive oxygen species (ROS) have critical roles as "second messengers" in cell signaling. In B cells, ROS can be generated either as a byproduct of mitochondrial respiration, as a result of the endoplasmic reticulum stress response induced by high production of Igs, or by the activation of NADPH oxidase (NOX) complexes. Having previously shown that costimulation of B cells via TLR 9 and the TLR-related receptor RP105 drives maturation of human peripheral blood B cells into Ig-producing cells, we aimed to study the role of ROS generated during this vital process. To this end, the ROS levels were either reduced by the NOX inhibitor VAS2870 or by the ROS scavenger N-acetyl cysteine (NAC). We revealed that TLR9/RP105-mediated stimulation of human B cells involved a rapid activation of NOX. Moreover, VAS2870 blocked the TLR9/RP105-induced B cell activation and thereby all Ig production. Importantly, we showed that ROS targeted by NAC was selectively required for IgG but not for IgM production. The endoplasmic reticulum stress response in the TLR9/RP105-stimulated cells was higher in IgG+ than in IgG- cells and was reduced by NAC in IgG+ cells only. Of note, we revealed that substantially higher levels of IgG than IgM were produced per cell and that IgG+ cells produced significantly higher ROS levels than IgG- cells. Taken together, our results imply that NAC-targeted ROS may be particularly important for sustaining the high Ig production in IgG+ B cells.


B-Lymphocytes/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Reactive Oxygen Species/metabolism , Toll-Like Receptors/immunology , Acetylcysteine/pharmacology , Benzoxazoles/pharmacology , Humans , Reactive Oxygen Species/antagonists & inhibitors , Triazoles/pharmacology
18.
Biochem Soc Trans ; 48(1): 199-205, 2020 02 28.
Article En | MEDLINE | ID: mdl-32065230

Tyrosine kinases are signaling molecules that are common to all metazoans and are involved in the regulation of many cellular processes such as proliferation and survival. While most attention has been devoted to tyrosine kinases signaling at the plasma membrane and the cytosol, very little attention has been dedicated to signaling at endomembranes. In this review, I will discuss recent evidence that we obtained on signaling of tyrosine kinases at the surface of the endoplasmic reticulum (ER), as well as in the lumen of this organelle. I will discuss how tyrosine kinase signaling might regulate ER proteostasis and the implication thereof to general cell physiology.


Endoplasmic Reticulum/enzymology , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Animals , Cytosol/enzymology , Endoplasmic Reticulum Stress/physiology , Humans , Mice , Phosphorylation/physiology , Proteostasis/physiology , Unfolded Protein Response
19.
Nat Chem Biol ; 16(3): 229-230, 2020 03.
Article En | MEDLINE | ID: mdl-32080623
20.
Virus Res ; 271: 197679, 2019 10 02.
Article En | MEDLINE | ID: mdl-31398365

Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often composed of interesting virus-interacting factors. A proteomic analysis performed on double gradient-purified clinical HCV highlighted the translation regulator LARP1 on these virions. This finding was validated using post-virion capture and immunoelectron microscopy, as well as immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a, JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5 cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization with core proteins. RNAi-mediated depletion of LARP1 using the C911 control approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and Gt3a (S52 chimeric strain), yet increased their intracellular infectivity. This latter effect was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a functional RUSH assay. These results indicate that LARP1 binds to HCV, an event associated with retention of intracellular infectivity.


Autoantigens/metabolism , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Host-Pathogen Interactions , Ribonucleoproteins/metabolism , Autoantigens/genetics , Hepatitis C/genetics , Humans , Protein Binding , RNA Interference , Ribonucleoproteins/genetics , Virion/isolation & purification , Virion/metabolism , SS-B Antigen
...