Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 878
Filter
1.
Article in English | MEDLINE | ID: mdl-38955975

ABSTRACT

The removal of dyes from the aquatic ecosystem is necessary being a major threat to life. For enhanced remediation of methylene blue (MB) dye, a new ternary biopolymer-geopolymer-surfactant composite adsorbent is synthesized by combining phosphoric acid geopolymer (PAGP), calcium alginate (Alg), and sodium lauryl sulfate (SLS). During the synthesis of the composites, PAGP and SLS were mixed with the alginate matrix, producing porous hybrid beads. The PAGP-SLS-alginate (PSA) beads prepared were characterized using different analytical tools, i.e., scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR), X-ray diffractometry (XRD), surface area and porosimetery (SAP), and thermogravimetric analysis (TGA). To ascertain the ideal conditions for the adsorption process, a batch reactor procedure was used to investigate the effects of several parameters on MB adsorption, including pH (2, 4, 6, 8, 10), PSA adsorbent dosage (0.06-0.12 g), MB concentration (50-500 mg/L), contact time (15 to 300 min), and temperature (25, 35, and 45 °C). The SEM investigation indicated that ~ 1860 µm-sized PSA beads with 6-8 µm voids are generated. Based on XRD, FTIR, and SAP examinations, the material is amorphous, having numerous functional groups and an average pore size of 6.42 nm. Variation of pH has a little effect on the adsorption process, and the pH of 7.44 was found to be the pHpzc of the PSA beads. According to the findings of the batch study, equilibrium adsorption was obtained in 270-300 min, showing that the adsorption process was moderately slow-moving and effective. The dye adsorption linearly increased with initial dye concentration over concentration range of 50-500 mg/L and reciprocally decreased with rise in temperature. 0.06 g adsorbent dose, 25 °C, pH10, and 270 min were found to be the better conditions for adsorption experiments. Langmuir isotherm fitted well compared to Freundlich, Temkin, and Dubinin-Radushkevich (DR) isotherm models on the experimental data, and the maximum adsorption capacity(qmax) calculated was 1666.6 mg. g-1. Pseudo-second-order (PSO) kinetics model and multi steps (two) intra particle diffusion (IPD) model fitted well on the adsorption kinetics data. The system's entropy, Gibbs free energy, and change in enthalpy were measured and found to be -109.171 J. mol-1. K-1, - 8.198 to - 6.014 kJ. mol-1, and - 40.747 kJ. mol-1. Thermodynamics study revealed that adsorption process is exothermic, energetically favorable and resulting in the decrease in randomness. Chemisorption is found to be the dominant mechanism as confirmed by pH effect, Langmuir isotherm, PSO kinetics, IPD model, and thermodynamics parameters. PSA beads were successfully regenerated using ethanol in a course of 120 min and re-used for five times. To sum up, the PSA adsorbent's impressive adsorption capability of 1666.66 mg/g highlights its potential as a successful solution for methylene blue removal. The results of this study add to the expanding corpus of information on sophisticated adsorption materials and demonstrate PSA's potential for real-world uses in wastewater treatment and environmental clean-up.

2.
Antioxidants (Basel) ; 13(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38929139

ABSTRACT

The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 µM, 100 µM, and 200 µM. Under copper stress, particularly at 100 µM and 200 µM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions. However, GABA treatment significantly alleviated the adverse effects of copper stress. It increased plant height by 13%, 18%, and 32%; plant biomass by 28%, 52%, and 60%; chlorophyll content by 12%, 30%, and 24%; and relative water content by 10%, 24%, and 26% in comparison to the C50, C100, and C200 treatments. Furthermore, GABA treatment effectively reduced electrolyte leakage by 11%, 34%, and 39%, and the concentration of reactive oxygen species, such as malondialdehyde (MDA), by 9%, 22%, and 27%, hydrogen peroxide (H2O2) by 12%, 38%, and 30%, and superoxide anion content by 8%, 33, and 39% in comparison to C50, C100, and C200 treatments. Additionally, GABA supplementation led to elevated levels of glutathione by 69% and 80%, superoxide dismutase by 22% and 125%, ascorbate peroxidase by 12% and 125%, and catalase by 75% and 100% in the C100+G and C200+G groups as compared to the C100 and C200 treatments. Similarly, GABA application upregulated the expression of GABA shunt pathway-related genes, including gamma-aminobutyric transaminase (OsGABA-T) by 38% and 80% and succinic semialdehyde dehydrogenase (OsSSADH) by 60% and 94% in the C100+G and C200+G groups, respectively, as compared to the C100 and C200 treatments. Conversely, the expression of gamma-aminobutyric acid dehydrogenase (OsGAD) was downregulated. GABA application reduced the absorption of Cu2+ by 54% and 47% in C100+G and C200+G groups as compared to C100, and C200 treatments. Moreover, GABA treatment enhanced the uptake of Ca2+ by 26% and 82%, Mg2+ by 12% and 67%, and K+ by 28% and 128% in the C100+G and C200+G groups as compared to C100, and C200 treatments. These findings underscore the pivotal role of GABA-induced enhancements in various physiological and molecular processes, such as plant growth, chlorophyll content, water content, antioxidant capacity, gene regulation, mineral uptake, and copper sequestration, in enhancing plant tolerance to copper stress. Such mechanistic insights offer promising implications for the advancement of safe and sustainable food production practices.

3.
PLoS One ; 19(6): e0302135, 2024.
Article in English | MEDLINE | ID: mdl-38861530

ABSTRACT

Soilless agriculture is acknowledged worldwide because it uses organic leftovers as a means of supporting intensive and efficient plant production. However, the quality of potting media deteriorates because of lower nutrient content and excessive shrinkage of most organic materials. A current study was undertaken to identify the optimal blend of locally available organic materials with desirable qualities for use as potting media. Therefore, different ingredients, viz., Pinus roxburghii needles, sugarcane bagasse, and farmyard manure were used alone or in combination as potting media to test their suitability by growing spinach as a test crop. Results showed that an increase in Pinus roxburghii needles and sugarcane bagasse decreased medium pH and electrical conductivity. Higher pH and electrical conductivity were recorded for the treatments having a higher farmyard manure ratio (≥50%) in combination. Except for pine needles 100%, pH and electrical conductivity were in the recommended range. The growth attributes include, leaves plant-1, shoot length, fresh- and dry shoot weight along with plant macronutrients (nitrogen, phosphorous, and potassium) and micronutrients (iron, copper, manganese, and zinc) content were higher in treatment pine needles 50%+farmyard manure 50% followed by pine needles 25%+farmyard manure 50%+sugarcane bagasse 25%. Moreover, the particular treatment of pine needles 50%+farmyard manure 50% exhibited the highest concentrations of macro- (nitrogen, phosphorus, and potassium) as well as micronutrients (iron, copper, manganese, and zinc) in the potting media following the harvest. This study highlights the potential of utilizing agro-industrial litter/waste as a soilless growing medium for spinach production under greenhouse conditions. When employed in appropriate proportions, this approach not only addresses disposal concerns but also proves effective for sustainable cultivation. Further research is needed to investigate the use of these wastes as potting media by mixing various particle-size ingredients.


Subject(s)
Manure , Pinus , Saccharum , Manure/analysis , Saccharum/growth & development , Saccharum/chemistry , Pinus/growth & development , Cellulose , Vegetables/growth & development , Vegetables/chemistry , Spinacia oleracea/growth & development , Spinacia oleracea/metabolism , Hydrogen-Ion Concentration , Electric Conductivity , Agriculture/methods , Plant Leaves/growth & development , Plant Leaves/chemistry , Soil/chemistry , Nitrogen/analysis
4.
Am J Clin Oncol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907598

ABSTRACT

OBJECTIVE: This systematic review and meta-analysis aims to evaluate the efficacy and safety of bevacizumab in patients with ovarian cancer over a shorter and longer follow-up period. METHODS: We searched Medline, Cochrane CENTRAL, Scopus, and Google Scholar for all phase 3 randomized controlled trials (RCTs) that administered bevacizumab to women with ovarian cancer. Review Manager 5.4 was used to calculate risk ratios (RR) and hazard ratios (HR) with 95% CIs. We assessed the quality of the included studies using version 2 of the Cochrane Risk of Bias tool (RoB 2). RESULTS: After screening the titles, abstracts, and full texts, we included nine RCTs in our systematic review and meta-analysis. Four RCTs had a low risk of bias, while 5 had some concerns. Bevacizumab was associated with a progression free survival benefit for <36 months (HR: 0.59, 95% CI: 0.45-0.76, P<0.0001, I2=90%) and >36 months (HR: 0.66, 95% CI: 0.55-0.80, P<0.0001, I2=80%), and an overall survival benefit for <36 months (HR: 0.87, 95% CI: 0.78-0.98, P=0.02, I2=0%) but not for >36 months (HR: 0.98, 95% CI: 0.89-1.09, P=0.77, I2=30%). There was no difference in deaths between intervention and control groups <36 months (RR: 0.95, 95% CI: 0.86-1.04, P=0.26, I2=10%) or >36 months (RR: 1.02, 95% CI: 0.97-1.06, P=0.50, I2=0%). Bevacizumab reduced disease progression <36 months (RR: 0.82, 95% CI: 0.72-0.92, P=0.0008, I2=82%) but not at >36 months (RR: 0.83, 95% CI: 0.58-1.19, P=0.30, I2=94%). The adverse events reported with Bevacizumab use included thrombocytopenia, neutropenia, leukocytopenia, anemia, hypertension, bleeding or hemorrhage, and gastrointestinal, cardiac, and dermatological adverse events. CONCLUSION: Bevacizumab may improve progression-free survival within and after 36 months, overall survival within 36 months, and reduce disease progression within 36 months.

5.
J Med Virol ; 96(6): e29727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864343

ABSTRACT

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in Pakistan, with a significant outbreak in 2023, prompting our investigation into the serotype and genomic diversity of the dengue virus (DENV). NS-1 positive blood samples from 153 patients were referred to the National Institute of Health, Pakistan, between July and October 2023. Among these, 98 (64.1%) tested positive using multiplex real-time PCR, with higher prevalence among males (65.8%) and individuals aged 31-40. Serotyping revealed DENV-1 as the predominant serotype (84.7%), followed by DENV-2 (15.3%). Whole-genome sequencing of 18 samples (DENV-1 = 17, DENV-2 = 01) showed that DENV-1 (genotype III) samples were closely related (>99%) to Pakistan outbreak samples (2022), and approx. > 98% with USA (2022), Singapore and China (2016), Bangladesh (2017), and Pakistan (2019). The DENV-2 sequence (cosmopolitan genotype; clade IVA) shared genetic similarity with Pakistan outbreak sequences (2022), approx. > 99% with China and Singapore (2018-2019) and showed divergence from Pakistan sequences (2008-2013). No coinfection with dengue serotypes or other viruses were observed. Comparisons with previous DENV-1 sequences highlighted genetic variations affecting viral replication efficiency (NS2B:K55R) and infectivity (E:M272T). These findings contribute to dengue epidemiology understanding and underscore the importance of ongoing genomic surveillance for future outbreak responses in Pakistan.


Subject(s)
Dengue Virus , Dengue , Disease Outbreaks , Genetic Variation , Genome, Viral , Genotype , Phylogeny , Serogroup , Whole Genome Sequencing , Humans , Pakistan/epidemiology , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Dengue/epidemiology , Dengue/virology , Male , Adult , Female , Young Adult , Middle Aged , Adolescent , Child , Genome, Viral/genetics , Child, Preschool , Aged , Infant , Serotyping , RNA, Viral/genetics
6.
Curr Med Imaging ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38874030

ABSTRACT

INTRODUCTION: The second highest cause of death among males is Prostate Cancer (PCa) in America. Over the globe, it's the usual case in men, and the annual PCa ratio is very surprising. Identical to other prognosis and diagnostic medical systems, deep learning-based automated recognition and detection systems (i.e., Computer Aided Detection (CAD) systems) have gained enormous attention in PCA. METHODS: These paradigms have attained promising results with a high segmentation, detection, and classification accuracy ratio. Numerous researchers claimed efficient results from deep learning-based approaches compared to other ordinary systems that utilized pathological samples. RESULTS: This research is intended to perform prostate segmentation using transfer learning-based Mask R-CNN, which is consequently helpful in prostate cancer detection. CONCLUSION: Lastly, limitations in current work, research findings, and prospects have been discussed.

7.
Vet Immunol Immunopathol ; 273: 110791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824909

ABSTRACT

Infectious bronchitis virus (IBV) strains of the Delmarva (DMV)/1639 genotype have been causing false layer syndrome (FLS) in the Eastern Canadian layer operations since the end of 2015. FLS is characterized by the development of cystic oviducts in layer pullets infected at an early age. Currently, there are no homologous vaccines for the control of this IBV genotype. Our previous research showed that a heterologous vaccination regimen incorporating Massachusetts (Mass) and Connecticut (Conn) IBV types protects layers against DMV/1639 genotype IBV. The aim of this study was to investigate the role of maternal antibodies conferred by breeders received the same vaccination regimen in the protection against the development of DMV/1639-induced FLS in pullets. Maternal antibody-positive (MA+) and maternal antibody-negative (MA-) female progeny chicks were challenged at 1 day of age and kept under observation for 16 weeks. Oviductal cystic formations were observed in 3 of 14 birds (21.4 %) in the MA- pullets, while the lesions were notably absent in the MA+ pullets. Milder histopathological lesions were observed in the examined tissues of the MA+ pullets. However, the maternal derived immunity failed to demonstrate protection against the damage to the tracheal ciliary activity, viral shedding, and viral tissue distribution. Overall, this study underscores the limitations of maternal derived immunity in preventing certain aspects of viral pathogenesis, emphasizing the need for comprehensive strategies to address different aspects of IBV infection.


Subject(s)
Antibodies, Viral , Chickens , Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Poultry Diseases/virology , Chickens/immunology , Chickens/virology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Maternally-Acquired , Trachea/immunology , Trachea/virology , Oviducts/immunology , Oviducts/pathology , Oviducts/virology
8.
Microbiol Resour Announc ; : e0009624, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860803

ABSTRACT

The genome of Bacillus paralicheniformis strain NBG-07 was sequenced using Illumina sequencing due to its ability to produce thermostable enzymes of industrial importance. The strain was isolated from the soil. Annotation of the draft genome revealed genes involved in the production of different enzymes, including alpha-amylase, protease, cellulase, and laccase.

9.
Cureus ; 16(5): e59627, 2024 May.
Article in English | MEDLINE | ID: mdl-38832148

ABSTRACT

Introduction Esophageal variceal bleeding is a potentially deadly consequence of portal hypertension in patients with cirrhosis. Although upper gastrointestinal endoscopy is still the preferred method for identifying esophageal varices (EV), the present study measured the platelet count to prothrombin time (PLT/PT) ratio for the assessment of portal hypertension and subsequent diagnosis of EVs in patients with chronic liver disease (CLD). Methods This was an observational comparative study conducted in the outpatient department of Patel Hospital, Karachi, Pakistan, using a non-probability consecutive sampling technique. Ethical approval was obtained from the Patel Hospital ethical review committee (PH/IRB/2022/028). An independent sample t-test was used for parametric data, whereas the Mann-Whitney U test was used for non-parametric data. The chi-square test was used to compare the categorical data of patients with and without EV. Receiver operating characteristic (ROC) analysis was performed to evaluate the cutoff values for the PLT/PT ratio, sensitivity, specificity, and area under the curve (AUC). Results The study involved 105 patients with and without EV. Among them, 38 (63.3%) males and 22 (36.7%) females had EV, whereas 30 (66.7%) males and 15 (33.3%) females did not. The platelet (PLT) count was also significantly lower in patients with EV (87.6 ± 59.8) than in those without (176.6 ± 87.7) (p < 0.001). The PLT/PT ratio was significantly lower in patients with EV (median: 5.04, IQR: 3.12-9.21) compared to those without (median: 14.57, IQR: 8.08-20.58) (p < 0.001). The sensitivity and specificity of the PLT/PT ratio for identifying EVs were 97.80% and 83.30%, respectively. Conclusion We found a significantly lower PLT/PT ratio in cases with EV than those without EV. After defining an optimal cutoff, PLT/PT had a high sensitivity in identifying cases with EVs in CLD. Therefore, we conclude that in patients with CLD, the PLT/PT ratio is a noninvasive predictor for the presence of EV.

10.
Expert Rev Cardiovasc Ther ; : 1-12, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38913423

ABSTRACT

INTRODUCTION: Stroke is a significant public health challenge as it is the second most common cause of death and the third leading cause of disability globally. Additionally, stroke incidence and the number of stroke deaths have been rising. Efforts to prevent stroke have been made, including high-risk approaches where patients are screened for cardiovascular risk factors, and population-based approaches which attempt to reduce stroke rates by improving overall population health. AREAS COVERED: We summarize studies of population-based approaches to stroke prevention involving greater than 1,000 participants identified on a PubMed database search. Based on these programs, challenges of population-based stroke prevention programs are discussed and potential keys to success are highlighted. EXPERT OPINION: Population-based stroke prevention programs face challenges including cost and interest of the public and certain stakeholders. Additionally, secular trends for improvement in risk factors and catastrophic adverse environmental circumstances add to the complexity of analyzing program success. Factors leading to successful programs include validated digital solutions for self-monitoring of risks, backing by global policy and legislation, flexibility to the needs of the population, intersectoral programs, community engagement, information dissemination back to the populations, and high-risk screening to develop a complementary combination approach to stroke prevention.

11.
Chemosphere ; 361: 142520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834092

ABSTRACT

Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 µm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.


Subject(s)
Composting , Lactuca , Microplastics , Soil Pollutants , Microplastics/analysis , Lactuca/metabolism , Lactuca/growth & development , Lactuca/chemistry , Soil Pollutants/analysis , Soil Pollutants/metabolism , Soil/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Environmental Monitoring , Polymers/analysis , Solid Waste/analysis , Polyethylene , Fertilizers/analysis , Polypropylenes
12.
Front Immunol ; 15: 1369406, 2024.
Article in English | MEDLINE | ID: mdl-38835760

ABSTRACT

Epigenetic mechanisms are involved in several cellular functions, and their role in the immune system is of prime importance. Histone deacetylases (HDACs) are an important set of enzymes that regulate and catalyze the deacetylation process. HDACs have been proven beneficial targets for improving the efficacy of immunotherapies. HDAC11 is an enzyme involved in the negative regulation of T cell functions. Here, we investigated the potential of HDAC11 downregulation using RNA interference in CAR-T cells to improve immunotherapeutic outcomes against prostate cancer. We designed and tested four distinct short hairpin RNA (shRNA) sequences targeting HDAC11 to identify the most effective one for subsequent analyses. HDAC11-deficient CAR-T cells (shD-NKG2D-CAR-T) displayed better cytotoxicity than wild-type CAR-T cells against prostate cancer cell lines. This effect was attributed to enhanced activation, degranulation, and cytokine release ability of shD-NKG2D-CAR-T when co-cultured with prostate cancer cell lines. Our findings reveal that HDAC11 interference significantly enhances CAR-T cell proliferation, diminishes exhaustion markers PD-1 and TIM3, and promotes the formation of T central memory TCM populations. Further exploration into the underlying molecular mechanisms reveals increased expression of transcription factor Eomes, providing insight into the regulation of CAR-T cell differentiation. Finally, the shD-NKG2D-CAR-T cells provided efficient tumor control leading to improved survival of tumor-bearing mice in vivo as compared to their wild-type counterparts. The current study highlights the potential of HDAC11 downregulation in improving CAR-T cell therapy. The study will pave the way for further investigations focused on understanding and exploiting epigenetic mechanisms for immunotherapeutic outcomes.


Subject(s)
Histone Deacetylases , Immunotherapy, Adoptive , Prostatic Neoplasms , RNA, Small Interfering , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/immunology , Humans , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Animals , Mice , RNA, Small Interfering/genetics , Cell Line, Tumor , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Gene Silencing , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays
13.
Chemosphere ; 362: 142694, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925521

ABSTRACT

Researchers are increasingly concerned about antimony (Sb) in ecosystems and the environment. Sb primarily enters the environment through anthropogenic (urbanization, industries, coal mining, cars, and biosolid wastes) and geological (natural and chemical weathering of parent material, leaching, and wet deposition) processes. Sb is a hazardous metal that can potentially harm human health. However, no comprehensive information is available on its sources, how it behaves in soil, and its bioaccumulation. Thus, this study reviews more than 160 peer-reviewed studies examining Sb's origins, geochemical distribution and speciation in soil, biogeochemical mechanisms regulating Sb mobilization, bioavailability, and plant phytotoxicity. In addition, Sb exposure effects plant physio-morphological and biochemical attributes were investigated. The toxicity of Sb has a pronounced impact on various aspects of plant life, including a reduction in seed germination and impeding plant growth and development, resulting from restricted essential nutrient uptake, oxidative damages, disruption of photosynthetic system, and amino acid and protein synthesis. Various widely employed methods for Sb remediation, such as organic manure and compost, coal fly ash, biochar, phytoremediation, microbial-based bioremediation, micronutrients, clay minerals, and nanoremediation, are reviewed with a critical assessment of their effectiveness, cost-efficiency, and suitability for use in agricultural soils. This review shows how plants deal with Sb stress, providing insights into lowering Sb levels in the environment and lessening risks to ecosystems and human health along the food chain. Examining different methods like bioaccumulation, bio-sorption, electrostatic attraction, and complexation actively works to reduce toxicity in contaminated agricultural soil caused by Sb. In the end, the exploration of recent advancements in genetics and molecular biology techniques are highlighted, which offers valuable insights into combating Sb toxicity. In conclusion, the findings of this comprehensive review should help develop innovative and useful strategies for minimizing Sb absorption and contamination and thus successfully managing Sb-polluted soil and plants to reduce environmental and public health risks.

14.
J Contam Hydrol ; 264: 104368, 2024 May.
Article in English | MEDLINE | ID: mdl-38776561

ABSTRACT

In this study, twenty-two water samples were collected from boreholes (BH), and streams to evaluate drinking water quality, its distribution, identification of contamination sources and apportionment for Moti village, northern Pakistan. An atomic absorption spectrophotometer (AAS) is utilized to determine the level of heavy metals in water such as arsenic (As), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), manganese (Mn), and ferrous (Fe). Groundwater chemistry and its quantitative driving factors were further explored using multivariate statistical methods, Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) models. Finally, a total of eight electrical resistivity tomographs (ERTs) were acquired across i) the highly contaminated streams; ii) the villages far away from contaminated streams; and iii) across the freshwater stream. In the Moti village, the mean levels (mg/l) of heavy metals in water samples were 7.2465 (As), 0.4971 (Zn), 0.5056 (Pb), 0.0422 (Cu), 0.0279 (Cd), 0.1579 (Mn), and 0.9253 (Fe) that exceeded the permissible limit for drinking water (such as 0.010 for As and Pb, 3.0 for Zn, 0.003 for Cd and 0.3 for Fe) established by the World Health Organization (WHO, 2008). The average entropy weighted water quality index (EWQI) of 200, heavy metal pollution index (HPI) of 175, heavy metal evaluation index (HEI) of 1.6 values reveal inferior water quality in the study area. Human health risk assessment, consisting of hazard quotient (HQ) and hazard index (HI), exceeded the risk threshold (>1),indicating prevention of groundwater usage. Results obtained from the PCA and PMF models indicated anthropogenic sources (i.e. industrial and solid waste) responsible for the high concentration of heavy metals in the surface and groundwater. The ERTs imaged the subsurface down to about 40 m depths and show the least resistivity values (<11 Ωm) for subsurface layers that are highly contaminated. However, the ERTs revealed relatively high resistivity values for subsurface layers containing fresh or less contaminated water. Filtering and continuous monitoring of the quality of drinking water in the village are highly recommended.


Subject(s)
Environmental Monitoring , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Water Quality , Pakistan , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Groundwater/analysis , Entropy , Tomography/methods , Principal Component Analysis , Drinking Water/chemistry , Drinking Water/analysis
15.
Heliyon ; 10(10): e31334, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818147

ABSTRACT

The availability of soil water content and nutrition in the maternal plant environment plays pivotal roles in shaping the performance, physio-biochemical properties, and chemical composition of the produced seed. This study aimed to investigate the effects of water and arbuscular mycorrhizal fungi (AMF) of maternal plant environment on performance, physio-biochemical properties, and chemical compositions of Lallemantia species offspring. A split-factorial experiment was performed using a randomized complete block design (RCBD) with three replications. The main plot consisted of three drought stress (30 %, 60 % and 90 % of soil available water depletion). The subplots were the factorial combination of arbuscular mycorrhizal fungi (AMF- and AMF+) and Lallemantia species (L. iberica and L. royleana). The offspring of both Lallemantia species experienced a decrease in seed performance, superoxide dismutase, catalase, ascorbate peroxidase enzyme activities, proline, and chemical composition as well as a rise in hydrogen peroxide and lipid peroxidation due to the limited availability of water in the maternal plant environment. On the other hand, providing adequate nutrition in the maternal plant environment resulted in improved germination index, increased starch, and oil content, as well as higher levels of nitrogen and phosphorus in the offspring of both Lallemantia species. Compared to the offspring of L. royleana, the offspring of L. iberica had a higher number of achenes, seeds, seed weight, larger seed size, greater germination index, and higher levels of starch, oil, nitrogen, phosphorus, potassium, and calcium. In contrast, the offspring of L. royleana exhibited higher longevity, enhanced germination under osmotic and salinity stress, increased proline levels, and higher activities of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbic peroxidase as well as sucrose and total soluble sugar. The study concludes that the best seed performance, antioxidant enzyme activities, and carbohydrate levels were observed in the offspring of both Lallemantia species produced under 60 % soil available water depletion with AMF inoculation in the maternal plant environment. These findings highlight the significant impact of the soil available water depletion and AMF inoculation on the seed performance, physio-biochemical properties, and chemical composition of the offspring, providing valuable insights for optimizing seed production and performance.

16.
Glob Pediatr Health ; 11: 2333794X241251644, 2024.
Article in English | MEDLINE | ID: mdl-38694564

ABSTRACT

Background. Autoimmune hepatitis (AIH) is increasingly seen in children worldwide and it is more severe in children compared to adults. This study highlights the biochemical and clinical aspect, treatment given and outcome of the disease including pediatric liver transplantation. Study. Retrospective review (2012-2022) was done in Shifa International Hospital, Islamabad. Patients under 18 years diagnosed with AIH were included. Data related to age, gender, clinical features, laboratory investigations including liver function test, liver biopsy findings and imaging modalities were included. Results. Fifteen patients were included 7 (47%) were males and 8 (53%) females. AIH type 1 was the most common type seen in 7 (46%), AIH type 2 in 5 (33%) and seronegative in 3 (20%). Jaundice was the most common symptom. Liver biopsy showed findings characteristic of AIH. Liver transplant performed in 3 patients. Conclusion. The study highlights the varied clinical presentation of AIH in Pakistani children.

17.
Sci Rep ; 14(1): 10239, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702340

ABSTRACT

The classification of locally rotationally symmetric Bianchi type V spacetime based on its killing vector fields is presented in this paper using an algebraic method. In this approach, a Maple algorithm is employed to transform the Killing's equations into a reduced evolutive form. Subsequently, the integration of the Killing's equations is carried out subject to the constraints provided by the algorithm. The algorithm demonstrates that there exist fifteen distinct metrics that could potentially possess Killing vector fields. Upon solving the Killing equations for all fifteen metrics, it is observed that seven out of the fifteen metrics exclusively exhibit the minimum number of Killing vector fields. The remaining eight metrics admit a varying number of Killing vector fields, specifically 6, 7, or 10. The Kretschmann scalar has been computed for each of the obtained metrics, revealing that all of them possess a finite Kretschmann scalar and thus exhibit regular behavior.

18.
Sci Rep ; 14(1): 12031, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797733

ABSTRACT

In the modern digital sphere, graph theory is a significant field of research that has a great deal of significance. It finds widespread application in computer science, robotic directions, and chemistry. Additionally, graph theory is used in robot network localization, computer network problems and the formation of various chemical structures for networks. Moreover, it finds uses in exploring diffusion mechanisms and scheduling aircraft as well. The present research project examines and concentrates on the edge version of metric dimension of the Concealed Non-Kekuléan Benzenoid Hydrocarbon, Polythiophene, Backbone DNA network and Bakelite networks. All the mentioned networks have constant edge metric dimension except Bakelite network, as demonstrated by the results. If we talk about the applications of these networks, Polythiophene are used to treat prion disorders. It is also capable of detecting metal ions. The concept of Bakelite, which finds applications in the jewelry, electrical, cookware, sports, and clock industries, had an impact on the invention of modern polymers. The functions of DNA include information encoding, replication, mutation, and recombination gene expression.

19.
J Burn Care Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38596864

ABSTRACT

Burn wounds are one of the most hazardous issues globally. Silkworm produces a protein called sericin. Sericin assists in wound healing by facilitating the proliferation of keratinocytes and fibroblasts while turmeric is potentially helpful in wound healing because of its antioxidant, anti-inflammatory, and anti-infectious activities. The current study aimed to investigate the synergetic and individual effects of turmeric, sericin, and their nanoparticles on burn wounds in mice. The female mice of 2 months of age (each weighing 29-30 g) were arbitrarily distributed in seven groups. Five mice were added to each group. Burn wounds were induced in mice by using a hot metal rod. Burn wounds were evaluated histologically and morphologically. Turmeric nanoparticles substantially improved the wound contraction area as compared to the negative control group and other treatment groups. The serum level of Glutathione (4.9±0.1umol/L), Catalase (6.0±0.2mmol/ml), Glutathione Peroxidase (183.4±5.1U/L), Superoxide dismutase (194.6±5.1 U/ml) were significantly increased in the turmeric nanoparticles (TNPs) group as compared to the negative control (2.8±0.1umol/L, 3.5±0.1mmol/ml, 87.8±3.0U/L, and 92.0±4.8U/ml respectively). The minimum levels of Malondialdehyde (3.8±0.2mmol/L) were noticed in TNPs group contrary to the negative control (7.4±0.2mmol/L). The restoration of the epidermis was also observed to be faster in TNPs group as compared to all other treatment groups. The histopathological analysis also demonstrated the effectiveness of turmeric, sericin, and their nanoparticles. In conclusion, turmeric, sericin, and their nanoparticles are effective in improving the healing process of burn wounds, but TNPs showed the most effective results as compared to all other treatment groups.

20.
Heliyon ; 10(7): e28980, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633643

ABSTRACT

Solid waste management is one of the biggest challenges of the current era. The combustible fractions in the waste stream turn out to be a good energy source if converted into refuse-derived fuel. Researchers worldwide are successfully converting it into fuel. However, certain challenges are associated with its application in gasifiers, boilers, etc. to co-fire it with coal. These include high moisture content, low calorific value, and difficulty to transport and store. The present study proposed torrefaction as a pretreatment of the waste by heating it in the range of 200 °C-300 °C in the absence of oxygen at atmospheric pressure. The combustible fraction from the waste stream consisting of wood, textile, paper, carton, and plastics termed as mixed waste was collected and torrefied at 225 °C, 250 °C, 275 °C, and 300 °C for 15 and 30 min each. It was observed that the mass yield and energy yield decreased to 45% and 62.96% respectively, but the energy yield tended to increase by the ratio of 1.39. Proximate analysis showed that the moisture content and volatile matter decreased for torrefied samples, whereas the ash content and fixed carbon content increased. Similarly, the elemental analysis revealed that the carbon content increased around 23% compared to raw samples with torrefaction contrary to hydrogen and oxygen, which decreased. Moreover, the higher heating value (HHV) of the torrefied samples increased around 1.3 times as compared to the raw sample. This pretreatment can serve as an effective solution to the current challenges and enhance refuse-derived fuel's fuel properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...