Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Neurobiol Dis ; 185: 106248, 2023 09.
Article En | MEDLINE | ID: mdl-37536384

Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.


Alcoholism , Substance Withdrawal Syndrome , Mice , Animals , Diazepam/pharmacology , Receptors, GABA-A/metabolism , Benzodiazepines/pharmacology , Brain/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid/pharmacology , Synaptic Transmission
2.
Eur J Med Chem ; 258: 115537, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37329715

A series of biologically unexplored substituted 1,3,4-subtituted-pyrrolo[3,2-c]quinoline derivatives (PQs) was evaluated against a panel of about 60 tumor cells (NCI). Based on the preliminary antiproliferative data, the optimizations efforts permitted us to design and synthesize a new series of derivatives allowing us to individuate a promising hit (4g). The insertion of a 4-benzo[d] [1,3]dioxol-5-yl moiety on increased and extended the activity towards five panel tumor cell lines such as leukemia, CNS, melanoma, renal and breast cancer, reaching IG50 in the low µM range. Replacement of this latter with a 4-(OH-di-Cl-Ph) group (4i) or introduction a Cl-propyl chain in position 1 (5), selectively addressed the activity against the entire leukemia sub-panel (CCRF-CEM, K-562, MOLT-4, RPMI-8226, SR). Preliminary biological assays on MCF-7 such as cell cycle, clonogenic assay, ROS content test alongside a comparison of viability between MCF-7 and non-tumorigenic MCF-10 were investigated. Among the main anticancer targets involved in breast cancer, HSP90 and ER receptors were selected for in silico studies. Docking analysis revealed a valuable affinity for HSP90 providing structural insights on the binding mode, and useful features for optimization.


Antineoplastic Agents , Breast Neoplasms , Hydroxyquinolines , Quinolines , Humans , Female , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor , Hydroxyquinolines/pharmacology , Quinolines/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Docking Simulation
3.
NPJ Parkinsons Dis ; 9(1): 55, 2023 Apr 07.
Article En | MEDLINE | ID: mdl-37029127

To date there are no therapeutic strategies that limit the progression of Parkinson's disease (PD). The mechanisms underlying PD-related nigrostriatal neurodegeneration remain incompletely understood, with multiple factors modulating the course of PD pathogenesis. This includes Nrf2-dependent gene expression, oxidative stress, α-synuclein pathology, mitochondrial dysfunction, and neuroinflammation. In vitro and sub-acute in vivo rotenone rat models of PD were used to evaluate the neuroprotective potential of a clinically-safe, multi-target metabolic and inflammatory modulator, the electrophilic fatty acid nitroalkene 10-nitro-oleic acid (10-NO2-OA). In N27-A dopaminergic cells and in the substantia nigra pars compacta of rats, 10-NO2-OA activated Nrf2-regulated gene expression and inhibited NOX2 and LRRK2 hyperactivation, oxidative stress, microglial activation, α-synuclein modification, and downstream mitochondrial import impairment. These data reveal broad neuroprotective actions of 10-NO2-OA in a sub-acute model of PD and motivate more chronic studies in rodents and primates.

4.
Adv Redox Res ; 62022 Dec.
Article En | MEDLINE | ID: mdl-36561324

Recent reports have clearly demonstrated a tight correlation between obesity and elevated circulating uric acid levels (hyperuricemia). However, nearly all preclinical work in this area has been completed with male mice, leaving the field with a considerable gap in knowledge regarding female responses to obesity and hyperuricemia. This deficiency in sex as a biological variable extends beyond unknowns regarding uric acid (UA) to several important comorbidities associated with obesity including nonalcoholic fatty liver disease (NAFLD). To attempt to address this issue, herein we describe both phenotypic and metabolic responses to diet-induced obesity (DIO) in female mice. Six-week-old female C57BL/6J mice were fed a high-fat diet (60% calories derived from fat) for 32 weeks. The DIO female mice had significant weight gain over the course of the study, higher fasting blood glucose, impaired glucose tolerance, and elevated plasma insulin levels compared to age-matched on normal chow. While these classic indices of DIO and NAFLD were observed such as increased circulating levels of ALT and AST, there was no difference in circulating UA levels. Obese female mice also demonstrated increased hepatic triglyceride (TG), cholesterol, and cholesteryl ester. In addition, several markers of hepatic inflammation were significantly increased. Also, alterations in the expression of redox-related enzymes were observed in obese mice compared to lean controls including increases in extracellular superoxide dismutase (Sod3), heme oxygenase (Ho)-1, and xanthine dehydrogenase (Xdh). Interestingly, hepatic UA levels were significantly elevated (~2-fold) in obese mice compared to their lean counterparts. These data demonstrate female mice assume a similar metabolic profile to that reported in several male models of obesity in the context of alterations in glucose tolerance, hepatic steatosis, and elevated transaminases (ALT and AST) in the absence of hyperuricemia affirming the need for further study.

5.
J Clin Invest ; 132(18)2022 09 15.
Article En | MEDLINE | ID: mdl-36106636

Sudden cardiac death (SCD) in patients with heart failure (HF) is allied with an imbalance in reduction and oxidation (redox) signaling in cardiomyocytes; however, the basic pathways and mechanisms governing redox homeostasis in cardiomyocytes are not fully understood. Here, we show that cytochrome b5 reductase 3 (CYB5R3), an enzyme known to regulate redox signaling in erythrocytes and vascular cells, is essential for cardiomyocyte function. Using a conditional cardiomyocyte-specific CYB5R3-knockout mouse, we discovered that deletion of CYB5R3 in male, but not female, adult cardiomyocytes causes cardiac hypertrophy, bradycardia, and SCD. The increase in SCD in CYB5R3-KO mice is associated with calcium mishandling, ventricular fibrillation, and cardiomyocyte hypertrophy. Molecular studies reveal that CYB5R3-KO hearts display decreased adenosine triphosphate (ATP), increased oxidative stress, suppressed coenzyme Q levels, and hemoprotein dysregulation. Finally, from a translational perspective, we reveal that the high-frequency missense genetic variant rs1800457, which translates into a CYB5R3 T117S partial loss-of-function protein, associates with decreased event-free survival (~20%) in Black persons with HF with reduced ejection fraction (HFrEF). Together, these studies reveal a crucial role for CYB5R3 in cardiomyocyte redox biology and identify a genetic biomarker for persons of African ancestry that may potentially increase the risk of death from HFrEF.


Heart Failure , Myocytes, Cardiac , Animals , Death, Sudden, Cardiac , Heart Failure/genetics , Heart Failure/metabolism , Male , Mice , Mice, Knockout , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Stroke Volume
6.
Neurobiol Dis ; 170: 105754, 2022 08.
Article En | MEDLINE | ID: mdl-35577065

Mitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity. Here we devised and validated a proximity ligation assay for NOX2 activity and demonstrated that in human PD and two animal models thereof, both neuronal and microglial NOX2 are highly active in substantia nigra under chronic conditions. However, in acute and sub-acute PD models, we observed neuronal, but not microglial NOX2 activation, suggesting that neuronal NOX2 may play a primary role in the early stages of the disease. Aberrant NOX2 activity is responsible for the formation of oxidative stress-related post-translational modifications of α-synuclein, and impaired mitochondrial protein import in vitro in primary ventral midbrain neuronal cultures and in vivo in nigrostriatal neurons in rats. In a rat model, administration of a brain-penetrant, highly specific NOX2 inhibitor prevented NOX2 activation in nigrostriatal neurons and its downstream effects in vivo, such as activation of leucine-rich repeat kinase 2 (LRRK2). We conclude that NOX2 is an important enzyme that contributes to progressive oxidative damage which in turn can lead to α-synuclein accumulation, mitochondrial protein import impairment, and LRRK2 activation. In this context, NOX2 inhibitors hold potential as a disease-modifying therapy in PD.


Parkinson Disease , alpha-Synuclein , Animals , Dopaminergic Neurons/metabolism , Mitochondrial Proteins/metabolism , NADPH Oxidase 2/metabolism , Parkinson Disease/metabolism , Rats , alpha-Synuclein/metabolism
7.
Nanotheranostics ; 6(2): 215-229, 2022.
Article En | MEDLINE | ID: mdl-34976596

Rationale: The treatment of microvascular obstruction (MVO) using ultrasound-targeted LNP cavitation (UTC) therapy mechanically relieves the physical obstruction in the microcirculation but does not specifically target the associated inflammatory milieu. Electrophilic fatty acid nitroalkene derivatives (nitro-fatty acids), that display pleiotropic anti-inflammatory signaling and transcriptional regulatory actions, offer strong therapeutic potential but lack a means of rapid targeted delivery. The objective of this study was to develop nitro-fatty acid-containing lipid nanoparticles (LNP) that retain the mechanical efficacy of standard LNP and can rapidly target delivery of a tissue-protective payload that reduces inflammation and improves vascular function following ischemia-reperfusion. Methods: The stability and acoustic behavior of nitro-fatty acid LNP (NO2-FA-LNP) were characterized by HPLC-MS/MS and ultra-high-speed microscopy. The LNP were then used in a rat hindlimb model of ischemia-reperfusion injury with ultrasound-targeted cavitation. Results: Intravenous administration of NO2-FA-LNP followed by ultrasound-targeted LNP cavitation (UTC) in both healthy rat hindlimb and following ischemia-reperfusion injury showed enhanced NO2-FA tissue delivery and microvascular perfusion. In addition, vascular inflammatory mediator expression and lipid peroxidation were decreased in tissues following ischemia-reperfusion revealed NO2-FA-LNP protected against inflammatory injury. Conclusions: Vascular targeting of NO2-FA-LNP with UTC offers a rapid method of focal anti-inflammatory therapy at sites of ischemia-reperfusion injury.


Nanoparticles , Tandem Mass Spectrometry , Animals , Fatty Acids/metabolism , Ischemia , Liposomes , Rats , Reperfusion
8.
Redox Biol ; 47: 102166, 2021 11.
Article En | MEDLINE | ID: mdl-34656824

NADPH oxidase 4 (NOX4) regulates endothelial inflammation by producing hydrogen peroxide (H2O2) and to a lesser extent O2•-. The ratio of NOX4-derived H2O2 and O2•- can be altered by coenzyme Q (CoQ) mimics. Therefore, we hypothesize that cytochrome b5 reductase 3 (CYB5R3), a CoQ reductase abundant in vascular endothelial cells, regulates inflammatory activation. To examine endothelial CYB5R3 in vivo, we created tamoxifen-inducible endothelium-specific Cyb5r3 knockout mice (R3 KO). Radiotelemetry measurements of systolic blood pressure showed systemic hypotension in lipopolysaccharides (LPS) challenged mice, which was exacerbated in R3 KO mice. Meanwhile, LPS treatment caused greater endothelial dysfunction in R3 KO mice, evaluated by acetylcholine-induced vasodilation in the isolated aorta, accompanied by elevated mRNA expression of vascular adhesion molecule 1 (Vcam-1). Similarly, in cultured human aortic endothelial cells (HAEC), LPS and tumor necrosis factor α (TNF-α) induced VCAM-1 protein expression was enhanced by Cyb5r3 siRNA, which was ablated by silencing the Nox4 gene simultaneously. Moreover, super-resolution confocal microscopy indicated mitochondrial co-localization of CYB5R3 and NOX4 in HAECs. APEX2-based electron microscopy and proximity biotinylation also demonstrated CYB5R3's localization on the mitochondrial outer membrane and its interaction with NOX4, which was further confirmed by the proximity ligation assay. Notably, Cyb5r3 knockdown HAECs showed less total H2O2 but more mitochondrial O2•-. Using inactive or non-membrane bound active CYB5R3, we found that CYB5R3 activity and membrane translocation are needed for optimal generation of H2O2 by NOX4. Lastly, cells lacking the CoQ synthesizing enzyme COQ6 showed decreased NOX4-derived H2O2, indicating a requirement for endogenous CoQ in NOX4 activity. In conclusion, CYB5R3 mitigates endothelial inflammatory activation by assisting in NOX4-dependent H2O2 generation via CoQ.


Cytochrome-B(5) Reductase/metabolism , Endothelial Cells , Hydrogen Peroxide , Animals , Cells, Cultured , Endothelium , Inflammation/genetics , Mice , NADPH Oxidase 4/genetics , NADPH Oxidases , Reactive Oxygen Species , Ubiquinone
9.
Redox Biol ; 41: 101913, 2021 05.
Article En | MEDLINE | ID: mdl-33819836

Organic nitrate esters, long-recognized therapies for cardiovascular disorders, have not been detected biologically. We characterize in rat stomach unsaturated fatty acid nitration reactions that proceed by generation of nitro-nitrate intermediates (NO2-ONO2-FA) via oxygen and nitrite dependent reactions. NO2-ONO2-lipids represent ∼70% of all nitrated lipids in the stomach and they decay in vitro at neutral or basic pH by the loss of the nitrate ester group (-ONO2) from the carbon backbone upon deprotonation of the α-carbon (pKa ∼7), yielding nitrate, nitrite, nitrosative species, and an electrophilic fatty acid nitroalkene product (NO2-FA). Of note, NO2-FA are anti-inflammatory and tissue-protective signaling mediators, which are undergoing Phase II trials for the treatment of kidney and pulmonary diseases. The decay of NO2-ONO2-FA occurs during intestinal transit and absorption, leading to the formation of NO2-FA that were subsequently detected in circulating plasma triglycerides. These observations provide new insight into unsaturated fatty acid nitration mechanisms, identify nitro-nitrate ester-containing lipids as intermediates in the formation of both secondary nitrogen oxides and electrophilic fatty acid nitroalkenes, and expand the scope of endogenous products stemming from metabolic reactions of nitrogen oxides.


Fatty Acids , Nitrates , Animals , Esters , Nitro Compounds , Nitrogen Oxides , Rats
10.
Nutrients ; 12(8)2020 Jul 30.
Article En | MEDLINE | ID: mdl-32751496

Elevated levels of estrogen are a risk factor for breast cancer. In addition to inducing DNA damage, estrogens can enhance cell proliferation as well as modulate fatty acid metabolism that collectively contributes to mammary tumorigenesis. Sulforaphane (SFN) is an isothiocyanate derived from broccoli that is currently under evaluation in multiple clinical trials for prevention of several diseases, including cancer. Previous studies showed that SFN suppressed DNA damage and lipogenesis pathways. Therefore, we hypothesized that administering SFN to animals that are co-exposed to 17ß-estradiol (E2) would prevent mammary tumor formation. In our study, 4-6 week old female August Copenhagen Irish rats were implanted with slow-release E2 pellets (3 mg x 3 times) and gavaged 3x/week with either vehicle or 100 µmol/kg SFN for 56 weeks. SFN-treated rats were protected significantly against mammary tumor formation compared to vehicle controls. Mammary glands of SFN-treated rats showed decreased DNA damage while serum free fatty acids and triglyceride species were 1.5 to 2-fold lower in SFN-treated rats. Further characterization also showed that SFN diminished expression of enzymes involved in mammary gland lipogenesis. This study indicated that SFN protects against breast cancer development through multiple potential mechanisms in a clinically relevant hormonal carcinogenesis model.


Anticarcinogenic Agents/pharmacology , Isothiocyanates/pharmacology , Mammary Neoplasms, Animal/prevention & control , Mammary Neoplasms, Experimental/prevention & control , Animals , Cell Proliferation/drug effects , DNA Damage/drug effects , Estradiol , Fatty Acids/blood , Female , Lipogenesis/drug effects , Mammary Neoplasms, Animal/chemically induced , Mammary Neoplasms, Experimental/chemically induced , Rats , Sulfoxides , Triglycerides/blood
11.
Toxicol Sci ; 170(1): 133-143, 2019 07 01.
Article En | MEDLINE | ID: mdl-30907971

There is a critical need to include female subjects in disease research; however, in Parkinson's disease, where the male-to-female incidence is about 1.5-to-1, the majority of preclinical research is conducted in male animals. The mitochondrial complex I inhibitor, rotenone, is selectively toxic to dopaminergic neurons, and reproduces several neuropathological features of Parkinson's disease, including α-synuclein pathology. Rotenone has been primarily utilized in male Lewis rats; however, pilot studies in age-matched female Lewis rats revealed that our usual dose (2.8 mg/kg/day intraperitoneal [i.p.]) did not cause dopaminergic neurodegeneration. Therefore, we compared rotenone-treated males (2.8 mg/kg/day, i.p.) to females at increasing doses (2.8 mg/kg/day, 3.2 mg/kg/day, 3.6 mg/kg/day, and 1.6 mg/kg bis in die, i.p.). Female rats receiving 3.2 mg/kg, and 3.6 mg/kg rotenone displayed significant loss of dopaminergic neurons in the substantia nigra as assessed by stereology, which was accompanied by a loss of striatal dopaminergic terminals. Even at these higher doses, however, females showed less inflammation, and less accumulation of α-synuclein and transferrin, possibly as a result of preserved autophagy. Thus, the bias toward increased male incidence of human Parkinson's disease is reflected in the rotenone model. Whether such sex differences will translate into differences in responses to mechanism-driven therapeutic interventions remains to be determined.


Parkinson Disease/metabolism , Rotenone/toxicity , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Female , Humans , Lysosomes/metabolism , Male , Microglia/drug effects , Microglia/metabolism , Rats , Rats, Inbred Lew , Sex Factors , Substantia Nigra/metabolism , Transferrin/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
12.
Redox Biol ; 22: 101132, 2019 04.
Article En | MEDLINE | ID: mdl-30769284

Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and insulin resistance and is the most prevalent chronic liver disease. During the development of obesity and NAFLD, mitochondria adapt to the increased lipid load in hepatocytes by increasing the rate of fatty acid oxidation. In concert with this, reactive species (RS) generation is increased, damaging hepatocytes and inducing inflammation. Hepatic mitochondrial dysfunction is central to the pathogenesis of NAFLD via undefined mechanisms. There are no FDA approved treatments for NAFLD other than weight loss and management of glucose tolerance. Electrophilic nitro-oleic acid (NO2-OA) displays anti-inflammatory and antioxidant signaling actions, thus mitochondrial dysfunction, RS production and inflammatory responses to NO2-OA and the insulin sensitizer rosiglitazone were evaluated in a murine model of insulin resistance and NAFLD. Mice on HFD for 20 wk displayed increased adiposity, insulin resistance and hepatic lipid accumulation (steatosis) compared to mice on normal chow (NC). The HFD mice had mitochondrial dysfunction characterized by lower hepatic mitochondrial complex I, IV and V activity compared to mice on NC. Treatment with NO2-OA or rosiglitazone for the last 42 days (out of 20 wk) abrogated HFD-mediated decreases in hepatic mitochondrial complex I, IV and V activity. Notably, NO2-OA treatment normalized hepatic triglyceride levels and significantly reversed hepatic steatosis. Despite the improved glucose tolerance observed upon rosiglitazone treatment, liver weight and hepatic triglycerides were significantly increased over vehicle-treated HFD mice. These observations support that the pleiotropic signaling actions of electrophilic fatty acids limit the complex hepatic and systemic pathogenic responses instigated by obesity, without the adverse effects of thiazolidinedione drugs such as rosiglitazone.


Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Obesity/complications , Oleic Acids/pharmacology , Protective Agents/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Biomarkers , Blood Glucose , Body Weight/drug effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose Intolerance , Hepatocytes/drug effects , Hepatocytes/metabolism , Lipid Metabolism , Male , Mice , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/metabolism , Oleic Acids/chemistry , Protective Agents/chemistry , Rosiglitazone/pharmacology , Triglycerides/metabolism
13.
J Lipid Res ; 60(2): 388-399, 2019 02.
Article En | MEDLINE | ID: mdl-30545956

Electrophilic nitro-fatty acids [NO2-FAs (fatty acid nitroalkenes)] showed beneficial signaling actions in preclinical studies and safety in phase 1 clinical trials. A detailed description of the pharmacokinetics (PK) of NO2-FAs is complicated by the capability of electrophilic fatty acids to alkylate thiols reversibly and become esterified in various complex lipids, and the instability of the nitroalkene moiety during enzymatic and base hydrolysis. Herein, we report the mechanism and kinetics of absorption, metabolism, and distribution of the endogenously detectable and prototypical NO2-FA, 10-nitro-oleic acid (10-NO2-OA), in dogs after oral administration. Supported by HPLC-high-resolution-MS/MS analysis of synthetic and plasma-derived 10-NO2-OA-containing triacylglycerides (TAGs), we show that a key mechanism of NO2-FA distribution is an initial esterification into complex lipids. Quantitative analysis of plasma free and esterified lipid fractions confirmed time-dependent preferential incorporation of 10-NO2-OA into TAGs when compared with its principal metabolite, 10-nitro-stearic acid. Finally, new isomers of 10-NO2-OA were identified in vivo, and their electrophilic reactivity and metabolism characterized. Overall, we reveal that NO2-FAs display unique PK, with the principal mechanism of tissue distribution involving complex lipid esterification, which serves to shield the electrophilic character of this mediator from plasma and hepatic inactivation and thus permits efficient distribution to target organs.


Alkenes/chemistry , Fatty Acids/chemistry , Fatty Acids/metabolism , Lipid Metabolism , Nitro Compounds/chemistry , Animals , Biological Transport , Dogs , Electron Transport , Esterification , Fatty Acids/blood , Fatty Acids/pharmacokinetics , Hydrogen-Ion Concentration , Isomerism , Male , Tissue Distribution
14.
Nitric Oxide ; 79: 38-44, 2018 09 01.
Article En | MEDLINE | ID: mdl-30006146

Nitro-fatty acids (NO2-FA) are pleiotropic modulators of redox signaling pathways. Their effects on inflammatory signaling have been studied in great detail in cell, animal and clinical models primarily using exogenously administered nitro-oleic acid. While we know a considerable amount regarding NO2-FA signaling, endogenous formation and metabolism is relatively unexplored. This review will cover what is currently known regarding the proposed mechanisms of NO2-FA formation, dietary modulation of endogenous NO2-FA levels, pathways of NO2-FA metabolism and the detection of NO2-FA and corresponding metabolites.


Fatty Acids/biosynthesis , Fatty Acids/metabolism , Nitro Compounds/metabolism , Animals , Humans , Nitric Oxide/metabolism , Oxidation-Reduction
15.
JCI Insight ; 3(5)2018 03 08.
Article En | MEDLINE | ID: mdl-29515034

Insulin resistance is associated with increased incidence and enhanced progression of cancers. However, little is known about strategies that can effectively ameliorate insulin resistance and consequently halt cancer progression. Herein, we propose that the transcription factor Nrf2 (also known as Nfe2l2) may be such a target, given its central role in disease prevention. To this end, we developed a mouse that overexpresses the Notch intracellular domain in adipocytes (AdNICD), leading to lipodystrophy-induced severe insulin resistance and subsequent development of sarcomas, as a model reflecting that Notch signaling is deregulated in cancers and shows positive associations with insulin resistance and fatty liver disease in humans. Nrf2 pathway activation was achieved by knocking down Keap1, a repressor of Nrf2, in the AdNICD background. Constitutively enhanced Nrf2 signaling in this setting led to prevention of hepatic steatosis, dyslipidemia, and insulin resistance by repressing hepatic lipogenic pathways and restoration of the hepatic fatty acid profile to control levels. This protective effect of Nrf2 against diabetes extended to significant reduction and delay in sarcoma incidence and latency. Our study highlights that the Nrf2 pathway, which has been induced by small molecules in clinical trials, is a potential therapeutic target against insulin resistance and subsequent risk of cancer.


Carcinogenesis/genetics , Insulin Resistance/genetics , NF-E2-Related Factor 2/metabolism , Receptors, Notch/metabolism , Sarcoma/genetics , Animals , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lipodystrophy/complications , Lipodystrophy/genetics , Lipodystrophy/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-E2-Related Factor 2/genetics , Protein Domains/genetics , Receptors, Notch/genetics , Sarcoma/metabolism , Sarcoma/pathology , Signal Transduction/genetics
16.
Am J Physiol Endocrinol Metab ; 315(2): E180-E195, 2018 08 01.
Article En | MEDLINE | ID: mdl-29486138

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a canonical regulator of cytoprotective gene expression, but evidence of its cross talk with other pathways, including metabolic ones, is ever increasing. Pharmacologic or systemic genetic activation of the Nrf2 pathway partially protects from obesity in mice and ameliorates fasting hyperglycemia in mice and humans. However, systemic Nrf2 deletion also protects from diet-induced obesity and insulin resistance in mice. To further investigate the effect of the disruption of Nrf2 on obesity in a tissue-specific manner, we focused on adipocytes and hepatocytes with targeted deletion of Nrf2. To this end, mice with cell-specific deletion of Nrf2 in adipocytes (ANKO) or hepatocytes (HeNKO) were fed a high-fat diet (HFD) for 6 mo and showed similar increases in body weight and body fat content. ANKO mice showed a partially deteriorated glucose tolerance, higher fasting glucose levels, and higher levels of cholesterol and nonesterified fatty acids compared with their Control counterparts. The HeNKO mice, though, had lower insulin levels and trended toward improved insulin sensitivity without having any difference in liver triglyceride accumulation. This study compared for the first time two conditional Nrf2 knockout models in adipocytes and in hepatocytes during HFD-induced obesity. None of these models could completely recapitulate the unexpected protection against obesity observed in the whole body Nrf2 knockout mice, but this study points out the differential roles that Nrf2 may play, beyond cytoprotection, in different target tissues and rather suggests systemic activation of the Nrf2 pathway as an effective means of prevention and treatment of obesity and type 2 diabetes.


Adipocytes/metabolism , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , NF-E2-Related Factor 2/metabolism , Obesity/genetics , Obesity/metabolism , Adiposity/genetics , Animals , Blood Glucose/metabolism , Body Composition/genetics , Body Weight/genetics , Glucose Intolerance/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Triglycerides/blood
17.
Tissue Eng Part A ; 24(11-12): 889-904, 2018 06.
Article En | MEDLINE | ID: mdl-29187125

Ventral hernia is often addressed surgically by the placement of prosthetic materials, either synthetic or from allogeneic and xenogeneic biologic sources. Despite advances in surgical approaches and device design, a number of postsurgical limitations remain, including hernia recurrence, mesh encapsulation, and reduced vascularity of the implanted volume. The in situ controlled release of angiogenic factors from a scaffold facilitating abdominal wall repair might address some of these issues associated with suboptimal tissue reconstruction. Furthermore, a biocomposite material that combines the favorable mechanical properties achievable with synthetic materials and the bioactivity associated with xenogeneic tissue sources would be desirable. In this report, an abdominal wall repair scaffold has been designed based on a microfibrous, elastomeric poly(ester carbonate)urethane urea matrix integrated with a hydrogel derived from decellularized porcine dermis (extracellular matrix [ECM] gel) and poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with nitro-oleic acid (NO2-OA). NO2-OA is an electrophilic fatty acid nitro-alkene derivative that, under hypoxic conditions, induces angiogenesis. This scaffold was utilized to repair a rat abdominal wall partial thickness defect, hypothesizing that the nitro-fatty acid release would facilitate increased angiogenesis at the 8-week endpoint. The quantification of neovascularization was conducted by novel methodologies to assess vessel morphology and spatial distribution. The repaired abdominal wall defects were evaluated by histopathologic methods, including quantification of the foreign body response and cellular ingrowth. The results showed that NO2-OA release was associated with significantly improved regional angiogenesis. The combined biohybrid scaffold and NO2-OA-controlled release strategy also reduced scaffold encapsulation, increased wall thickness, and enhanced cellular infiltration. More broadly, the three components of the composite scaffold design (ECM gel, polymeric fibers, and PLGA microparticles) enable the tuning of performance characteristics, including scaffold bioactivity, degradation, mechanics, and drug release profile, all decisive factors to better address current limitations in abdominal wall repair or other soft tissue augmentation procedures.


Abdominal Wall , Oleic Acid/therapeutic use , Animals , Biocompatible Materials , Extracellular Matrix/metabolism , Neovascularization, Physiologic/drug effects , Rats
18.
Sci Rep ; 7: 39900, 2017 01 05.
Article En | MEDLINE | ID: mdl-28054588

Nitrated fatty acids are endogenously present in human and animal tissues, as well as in plant-derived oils. In particular, 10-nitro oleic acid (10-NO2-OA) potently induces Nrf2-dependent antioxidant gene expression and inhibits TLR4/NF-κB signaling, thus promoting an overall cyto-protective and anti-inflammatory response. 10-NO2-OA has been extensively tested in animal models and is currently undergoing clinical evaluation in humans. Bio-elimination pathways for 10-NO2-OA were evaluated in rats (30 mg/kg·day) and in humans (0.34 mg/kg) using samples obtained from a double-blind, dose-rising clinical trial. Quantitative radiochromatographic/MS analysis indicated that the renal and fecal pathways are the main routes for 10-NO2-OA excretion in rats, and allowed the identification of 4-nitro-octanedioic acid (NO2-8:0-diCOOH) as the most abundant metabolite in rat urine. In addition, high resolution LC-MS/MS analysis revealed the presence of a novel series of urinary metabolites including ω-carboxylation and ß-oxidation products, as well as N-acetylcysteine, taurine and sulfo-conjugates in both rats and humans. Overall, the findings reported herein not only provide valuable tools for the experimental evaluation of 10-NO2-OA levels in vivo, but importantly they also set the basis for monitoring its metabolism during potential clinical interventions in humans.


Antioxidants/pharmacokinetics , Intestinal Elimination , Oleic Acids/pharmacokinetics , Renal Elimination , Adult , Animals , Antioxidants/administration & dosage , Antioxidants/metabolism , Female , Humans , Male , Middle Aged , Oleic Acids/administration & dosage , Oleic Acids/metabolism , Randomized Controlled Trials as Topic , Rats , Rats, Sprague-Dawley
19.
J Lipid Res ; 58(2): 375-385, 2017 02.
Article En | MEDLINE | ID: mdl-27913584

Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.


Adipose Tissue/metabolism , Fatty Acids/metabolism , Oleic Acids/administration & dosage , Oleic Acids/metabolism , Adipose Tissue/chemistry , Alkenes/chemistry , Animals , Carbon Radioisotopes/chemistry , Cysteine/chemistry , Esterification , Fatty Acids/chemistry , Mice , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Oleic Acids/chemistry , Protein Processing, Post-Translational , Rats , Signal Transduction/drug effects , Tandem Mass Spectrometry
20.
Free Radic Biol Med ; 87: 113-24, 2015 Oct.
Article En | MEDLINE | ID: mdl-26066303

Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial ß-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.


Alkenes/metabolism , Esterification , Fatty Acids/metabolism , Nitric Oxide/metabolism , Triglycerides/metabolism , Animals , Male , Mitochondria/metabolism , Nitro Compounds/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Rats , Signal Transduction
...