Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
J Colloid Interface Sci ; 675: 461-470, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986319

ABSTRACT

Numerous applications require low humidity sensors that not only sensitive but also stable, small hysteresis, high resolution and fast response. However, most reported low humidity sensors cannot possess these properties at the same time. In this work, inspired by sea urchin, we developed an ionic liquid (IL) modified metal organic framework (UiO-66) based low humidity sensor. Owing to the synergistic effect of the hydrophilicity and ionic conductivity of IL and the steric hindrance effects of UiO-66, the optimized low humidity sensor simultaneously exhibits high response (47.5), small hysteresis (0.3 % RH), ultrafast response speed (0.2 s), high resolution (1 % RH), and excellent long-term stability (>120 days). In particular, the sensor has been proved to have potential applications in visual humidity detection and water source location. This work provides a preliminary design principle that will contribute to the preparation of high-performance low humidity sensing materials.

2.
J Clin Invest ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963708

ABSTRACT

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

3.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951519

ABSTRACT

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Subject(s)
Antineoplastic Agents , CRISPR-Cas Systems , Drug Resistance, Neoplasm , Irinotecan , Oxaliplatin , Protein Serine-Threonine Kinases , Drug Resistance, Neoplasm/genetics , Humans , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxaliplatin/pharmacology , Irinotecan/pharmacology , CRISPR-Cas Systems/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Neoplasms/genetics , Neoplasms/drug therapy , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects
4.
Int Immunopharmacol ; 139: 112615, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032475

ABSTRACT

BACKGROUND AND PURPOSE: Liver cancer is the fourth leading cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the most common type of primary liver cancer. APG-1252 is a small molecule inhibitor targeting Bcl-2 and Bcl-xl. However, its anti-tumor effects in HCC, alone or in combination with Cabozantinib, have not been extensively studied. EXPERIMENTAL: Approach: TCGA database analysis was used to analysis the gene expression levels of Bcl-2 and Bcl-xl in HCC tissues. Western blot was employed to detect the protein expression levels. And the inhibitory effects of APG-1252 and Cabozantinib on the proliferation of HCC cell lines was detected by CCK-8. The effect on the migration and invasion of HCC cells was verified by transwell assay. Huh7 xenograft model in nude mice was used to investigate the combination antitumor effect in vivo. KEY RESULTS: Our study demonstrated that APG-1252 monotherapy inhibited the proliferation and migration ability of HCC cells, and induced HCC cells apoptosis. The combination of APG-1252 and Cabozantinib showed significant synergistic antitumor effects. Furthermore, the in vivo experiment demonstrated that the combination therapy exerted a synergistic effect in delaying tumor growth, notably downregulating MEK/ERK phosphorylation levels. In terms of mechanism, Cabozantinib treatment caused an increase in the phosphorylation levels of CREB and Bcl-xl proteins, while the combination with APG-1252 mitigated this effect, thereby enhanced the antitumor effect of Cabozantinib. CONCLUSION AND IMPLICATIONS: Our findings suggest that APG-1252 in combination with Cabozantinib offers a more effective treatment strategy for HCC patients, warranting further clinical investigation.

5.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38895335

ABSTRACT

Hematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit lo subset of HSCs is enriched for multipotential precursors, 1, 2 but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit lo HSCs. Using a preclinical allo-HCT model, we demonstrate that Kit lo HSCs support better thymic recovery, and T-cell reconstitution resulting in improved T cell responses to infection post-HCT. Furthermore, Kit lo HSCs with augmented BM lymphopoiesis mitigate age-associated thymic alterations, thus enhancing T-cell recovery in middle-aged hosts. We find the frequency of the Kit lo subset declines with age, providing one explanation for the reduced frequency of T-competent HSCs and reduced T-lymphopoietic potential in BM precursors of aged mice. 3, 4, 5 Chromatin profiling revealed that Kit lo HSCs exhibit higher activity of lymphoid-specifying transcription factors (TFs), including Zbtb1 . Deletion of Zbtb1 in Kit lo HSCs diminished their T-cell potential, while reinstating Zbtb1 in megakaryocytic-biased Kit hi HSCs rescued T-cell potential, in vitro and in vivo . Finally, we discover an analogous Kit lo HSC subset with enhanced lymphoid potential in human bone marrow. Our results demonstrate that Kit lo HSCs with enhanced lymphoid potential have a distinct underlying epigenetic program.

6.
Cell Stem Cell ; 31(6): 921-939.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38692273

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.


Subject(s)
Nephrons , Organoids , Animals , Organoids/cytology , Organoids/metabolism , Humans , Nephrons/cytology , Mice , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Podocytes/metabolism , Podocytes/cytology , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Models, Biological , Gene Editing
7.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698178

ABSTRACT

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Subject(s)
Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Mouth , RNA, Ribosomal, 16S , Feces/microbiology , Humans , Animals , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Mouth/microbiology , Colitis/microbiology , Disease Models, Animal , Inflammatory Bowel Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Dextran Sulfate
8.
ACS Appl Mater Interfaces ; 16(17): 22547-22557, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628112

ABSTRACT

Soft actuators with stimuli-responsive and reversible deformations have shown great promise in soft robotics. However, some challenges remain in existing actuators, such as the materials involved derived from nonrenewable resources, complex and nonscalable preparation methods, and incapability of complex and programmable deformation. Here, a biobased ink based on cuttlefish ink nanoparticles (CINPs) and cellulose nanofibers (CNFs) was developed, allowing for the preparation of biodegradable patterned actuators by direct ink writing technology. The hybrid CNF/CINP ink displays good rheological properties, allowing it to be accurately printed on a variety of flexible substrates. A bilayer actuator was developed by printing an ink layer on a biodegradable poly(lactic acid) film using extrusion-based 3D printing technology, which exhibits reversible and large bending behavior under the stimuli of humidity and light. Furthermore, programmable and reversible folding and coiling deformations in response to stimuli have been achieved by adjusting the ink patterns. This work offers a fast, scalable, and cost-effective strategy for the development of biodegradable patterned actuators with programmable shape-morphing.

9.
Heliyon ; 10(8): e27667, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681591

ABSTRACT

A distinct rise of global interest in the role of cultural and creative industries in post-industrial urban development calls for the transformation of our industrial heritage into creative clusters. Despite many factories being removed in deindustrialization, some enterprises still preserve and reuse the former industrial lands. However, the inconclusive judgments on the performances of creative clusters call for an in-depth examination of the underlying mechanism of transforming dilapidated urban industrial spaces. In addition, few empirical studies have revealed the commonalities and differences of market entities employing both the top-down and bottom-up approaches during the redevelopment. In this article, a multilevel transformation, and the consequent spatial performance in three postindustrial lands in Beijing have been examined based on big data analysis, field observation and in-depth interviews. We reached three conclusions. First, in addition to the angle of participatory planning, the deep exploration of specific market entities as an intermediate joint among different parties in protecting and reusing the postindustrial lands uncovers a distinct perspective of urban revitalization. Second, the finding of the enterprises' role in mitigating the conflicts between bottom-up and top-down approaches further testifies to a less-dichotomous perspective in urban regeneration studies. Last, though the examination of the multilevel transformation mechanism reflecting the difference between state and nonstate enterprises in property-led management, a generic paradigm behind the trend of relying on enterprises in revitalizing the large-scale postindustrial lands is revealed.

10.
Bone Marrow Transplant ; 59(7): 910-917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627450

ABSTRACT

Hematologic toxicity frequently complicates chimeric antigen receptor (CAR) T-cell therapy, resulting in significant morbidity and mortality. In an effort to standardize reporting, the European Hematology Association (EHA) and European Society of Blood and Marrow Transplantation (EBMT) devised the immune effector cell-associated hematotoxicity (ICAHT) grading system, distinguishing between early (day 0-30) and late (after day +30) events based on neutropenia depth and duration. However, manual implementation of ICAHT grading criteria is time-consuming and susceptible to subjectivity and error. To address these challenges, we introduce a novel computational approach, utilizing the R programming language, to automate early and late ICAHT grading. Given the complexities of early ICAHT grading, we benchmarked our approach both manually and computationally in two independent cohorts totaling 1251 patients. Our computational approach offers significant implications by streamlining grading processes, reducing manual time and effort, and promoting standardization across varied clinical settings. We provide this tool to the scientific community alongside a comprehensive implementation guide, fostering its widespread adoption and enhancing reporting consistency for ICAHT.


Subject(s)
Immunotherapy, Adoptive , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects
11.
J Hematol Oncol ; 17(1): 21, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649972

ABSTRACT

Relapse and toxicity limit the effectiveness of chimeric antigen receptor T-cell (CAR-T) therapy for large B-cell lymphoma (LBCL), yet biomarkers that predict outcomes and toxicity are lacking. We examined radiomic features extracted from pre-CAR-T 18F-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) scans (n = 341) of 180 patients (121 male; median age, 66 years). Three conventional (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], total lesion glycolysis [TLG]) and 116 novel radiomic features were assessed, along with inflammatory markers, toxicities, and outcomes. At both pre-apheresis and pre-infusion time points, conventional PET features of disease correlated with elevated inflammatory markers. At pre-infusion, MTV was associated with grade ≥ 2 cytokine release syndrome (odds ratio [OR] for 100 mL increase: 1.08 [95% confidence interval (CI), 1.01-1.20], P = 0.031), and SUVmax was associated with failure to achieve complete response (CR) (OR 1.72 [95% CI, 1.24-2.43], P < 0.001). Higher pre-apheresis and pre-infusion MTV values were associated with shorter progression-free survival (PFS) (HR for 10-unit increase: 1.11 [95% CI, 1.05-1.17], P < 0.001; 1.04 [95% CI, 1.02-1.07], P < 0.001) and shorter overall survival (HR for 100-unit increase: 1.14 [95% CI, 1.07-1.21], P < 0.001; 1.04 [95% CI, 1.02-1.06], P < 0.001). A combined MTV and LDH measure stratified patients into high and low PFS risk groups. Multiple pre-infusion novel radiomic features were associated with CR. These quantitative conventional [18F]FDG PET/CT features obtained before CAR-T cell infusion, which were correlated with inflammation markers, may provide prognostic biomarkers for CAR-T therapy efficacy and toxicity. The use of conventional and novel radiomic features may thus help identify high-risk patients for earlier interventions.


Subject(s)
Fluorodeoxyglucose F18 , Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Positron Emission Tomography Computed Tomography/methods , Aged , Immunotherapy, Adoptive/methods , Middle Aged , Lymphoma, Large B-Cell, Diffuse/therapy , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Adult , Treatment Outcome , Aged, 80 and over , Radiopharmaceuticals , Prognosis , Retrospective Studies
12.
Neurosurgery ; 95(2): 380-391, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38456696

ABSTRACT

BACKGROUND AND PURPOSE: A retrospective single-center analysis of the safety and efficacy of reirradiation to 40 Gy in 5 fractions (reSBRT) in patients previously treated with stereotactic body radiotherapy to the spine was performed. METHODS: We identified 102 consecutive patients treated with reSBRT for 105 lesions between 3/2013 and 8/2021. Sixty-three patients (61.8%) were treated to the same vertebral level, and 39 (38.2%) to overlapping immediately adjacent levels. Local control was defined as the absence of progression within the treated target volume. The probability of local progression was estimated using a cumulative incidence curve. Death without local progression was considered a competing risk. RESULTS: Most patients had extensive metastatic disease (54.9%) and were treated to the thoracic spine (53.8%). The most common regimen in the first course of stereotactic body radiotherapy was 27 Gy in 3 fractions, and the median time to reSBRT was 16.4 months. At the time of simulation, 44% of lesions had advanced epidural disease. Accordingly, 80% had myelogram simulations. Both the vertebral body and posterior elements were treated in 86% of lesions. At a median follow-up time of 13.2 months, local failure occurred in 10 lesions (9.5%). The 6- and 12-month cumulative incidences of local failure were 4.8% and 6%, respectively. Seven patients developed radiation-related neuropathy, and 1 patient developed myelopathy. The vertebral compression fracture rate was 16.7%. CONCLUSION: In patients with extensive disease involvement, reSBRT of spine metastases with 40 Gy in 5 fractions seems to be safe and effective. Prospective trials are needed to determine the optimal dose and fractionation in this clinical scenario.


Subject(s)
Radiosurgery , Re-Irradiation , Salvage Therapy , Spinal Neoplasms , Humans , Radiosurgery/methods , Male , Female , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/surgery , Spinal Neoplasms/secondary , Aged , Middle Aged , Retrospective Studies , Re-Irradiation/methods , Salvage Therapy/methods , Aged, 80 and over , Adult , Dose Fractionation, Radiation , Treatment Outcome
13.
Nat Microbiol ; 9(3): 614-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429422

ABSTRACT

Microbial transformation of bile acids affects intestinal immune homoeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. In addition, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases.


Subject(s)
Graft vs Host Disease , T-Lymphocytes , Humans , Intestines , Inflammation , Bile Acids and Salts
14.
ACS Nano ; 18(10): 7521-7531, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38420965

ABSTRACT

Accurately acquiring crucial data on the ambient surroundings and physiological processes delivered via subtle temperature fluctuation is vital for advancing artificial intelligence and personal healthcare techniques but is still challenging. Here, we introduce an electrically induced cation injection mechanism based on thermal-mediated ion migration dynamics in an asymmetrical polymer bilayer (APB) composed of nonionic polymer and polyelectrolyte layers, enabling the development of ultrasensitive flexible temperature sensors. The resulting optimized sensor achieves ultrahigh sensitivity, with a thermal index surpassing 10,000 K-1, which allows identifying temperature differences as small as 10 mK with a sensitivity that exceeds 1.5 mK. The mechanism also enables APB sensors to possess good insensitivity to various mechanical deformations─features essential for practical applications. As a proof of concept, we demonstrate the potential impact of APB sensors in various conceptual applications, such as mental tension evaluation, biomimetic thermal tactile, and thermal radiation detection.

15.
World J Urol ; 42(1): 6, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172428

ABSTRACT

OBJECTIVES: To investigate the role of the oral and gut microbiome related to systemic metabolism and clinical parameters in various types of kidney stone disease. PATIENTS AND METHODS: We conducted a case-control study by analyzing 16S rRNA and untargeted metabolomics profiling of 76 fecal, 68 saliva, 73 urine, and 43 serum samples from 76 participants aged 18-75 years old. The participants included 15 patients with uric acid stones, 41 patients with calcium oxalate stones, and 20 healthy controls. Correlations among microbiome, metabolism, and clinical parameters were identified through Spearman's correlation analysis. (Clinical trial No. ChiCTR2200055316). RESULTS: Patients with uric acid stones exhibited reduced richness and diversity in their microbiome, as well as altered composition in both oral and gut microbiome. Furthermore, their fecal samples showed lower relative abundances of Bacteroides and Lachnospiraceae, while their saliva samples showed higher relative abundances of Porphyromonas and Neisseria. Predicted KEGG metabolism pathways, including amino acid and fatty acid metabolisms, were significantly altered in subjects with uric acid stones. Oral, gut microbiota, and metabolism were also associated with low water intake and urine pH. The area under the curve (AUC) of the specific microbiota and metabolite prediction models was over 0.85. CONCLUSION: The structure and composition of the oral and gut microbiome in different types of kidney stone disease, the correlations between oral and gut microbiome, and the associations among oral and gut microbiota, systemic metabolism and clinical parameters imply an important role that the oral and gut microbiome may play in kidney stone disease.


Subject(s)
Gastrointestinal Microbiome , Kidney Calculi , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Gastrointestinal Microbiome/genetics , Case-Control Studies , Uric Acid , RNA, Ribosomal, 16S/genetics , Kidney Calculi/urine
16.
ACS Appl Mater Interfaces ; 16(6): 7406-7414, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295226

ABSTRACT

Resistive humidity sensors are required in flexible and integrated devices. Two-dimensional MoO3 offers a large interface area, enabling the modulation of its electrical properties over a wide range. In this study, 2D MoO3 was synthesized via liquid-phase exfoliation for humidity-sensing tests. In terms of high sensitivity, negligible hysteresis, linearity, and stability, the humidity-sensing performance of MoO3 is superior to those of other materials. The sensitivity reaches 9794 Ω/RH at 25 °C. The sensing mechanism of MoO3 was investigated by using impedance spectra and voltage-current scans under different humidity levels. The results indicate that the resistance change of MoO3 due to humidity originates from the interfacial conductance. Interfacial H2O adsorption induces efficient conducting paths via hydrogen bonding, decreases the potential barrier for electron transfer, and supplies additional electron states to the valence bands. In this study, electronic humidity sensing was investigated in depth, and a new perspective was proposed for electronic humidity sensing.

17.
Sci Total Environ ; 916: 169938, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38199346

ABSTRACT

This study estimated and compared mortality risks among people living with HIV (PLWH) under the real-world and hypothetical scenarios of PM2.5 concentrations and HIV severity. An open cohort from all PLWH receiving antiretroviral therapy in Sichuan during 2010-2019 was constructed, resulting in 541,515 person-years. Annual mean concentrations of PM2.5 were estimated and linked to PLWH by their residential address. The parametric g-formula were used to assess 3- and 5-year mortality risks under the real-world and hypothetical scenarios of PM2.5 (10-35, 35-50, 50-75 µg/m3) and CD4 concentrations (0-200, 200-500, 500-800, 800-1100 counts/µl). The estimated 3- and 5-year mortality risks among the PLWH were 14.43 % and 19.38 %, respectively, which would decrease substantially when annual PM2.5 concentration were reduced to between 10 and 35 µg/m3 (risk difference [RD] = -3.23 % and - 4.06 %) and would increase when PM2.5 concentration were elevated to between 50 and 75 µg/m3 (RD = 3.59 % and 5.04 %). The mortality risk would increase when CD4 concentration were reduced to <200 counts/µl (RD = 15.90 % and 20.27 %) and would decrease when CD4 concentration were ≥ 200 counts/µl, especially to between 800 and 1100 counts/µl (RD = -9.01 % and - 11.75 %). The elevated concentration of PM2.5 may disproportionately affect individuals with immune deficiency, especially those with more severity. The findings would serve as justifications for future intervention design and policy making to alleviate air pollution and improve environmental justice and health equity.


Subject(s)
Air Pollutants , Air Pollution , HIV Infections , Humans , Prospective Studies , Air Pollution/analysis , HIV Infections/drug therapy , HIV Infections/epidemiology , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Exposure
18.
Chemistry ; 30(20): e202303826, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38221628

ABSTRACT

Hydrogen (H2), produced by water electrolysis with the electricity from renewable sources, is an ideal energy carrier for achieving a carbon-neutral and sustainable society. Hydrogen evolution reaction (HER) is the cathodic half-reaction of water electrolysis, which requires active and robust electrocatalysts to reduce the energy consumption for H2 generation. Despite numerous electrocatalysts have been reported by the academia for HER, most of them were only tested under relatively small current densities for a short period, which cannot meet the requirements for industrial water electrolysis. To bridge the gap between academia and industry, it is crucial to develop highly active HER electrocatalysts which can operate at large current densities for a long time. In this review, the mechanisms of HER in acidic and alkaline electrolytes are firstly introduced. Then, design strategies towards high-performance large-current-density HER electrocatalysts from five aspects including number of active sites, intrinsic activity of each site, charge transfer, mass transfer, and stability are discussed via featured examples. Finally, our own insights about the challenges and future opportunities in this emerging field are presented.

19.
Stat Interface ; 17(1): 79-90, 2024.
Article in English | MEDLINE | ID: mdl-38222248

ABSTRACT

Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E-M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123667, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38000326

ABSTRACT

Conjugated porous polymers (CPPs) are a kind of promising sensing materials for the detection of nitroaromatic compounds, but their sensing applications in aqueous media are limited because of their poor dispersity or solubility in water. In this study, we prepared anthracene and tetraphenylsilane based CPPs named PSiAn by conventional Suzuki coupling and Suzuki-miniemulsion polymerization, respectively. The structure, morphology and porosity of the CPPs were characterized by Fourier Transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), transmission electron microscope (TEM) and N2 sorption isotherm, respectively. Both of the CPPs have porous structure which is beneficial for the adsorption and diffusion of the analytes within them. The particle size of PSiAn nanoparticles prepared by Suzuki-miniemulsion polymerization is 10-40 nm from the TEM image, which facilitates the dispersion in the aqueous phase. Combined with the porosity and nanoparticle morphology, PSiAn nanoparticles realized the efficient photoluminescence (PL) sensing of nitroaromatic explosives in aqueous phase. The limit of detection (LOD) and limit of quantitation (LOQ) of PSiAn nanoparticles for 2,4,6-trinitrophenol (TNP) detection in the pure aqueous phase are 0.33 µM and 1.11 µM, respectively. Meanwhile, the good selectivity and anti-interference in presence of other nitro-compounds were observed. Furthermore, the spike/recovery test for the TNP detection in real water samples by PL sensing based on PSiAn nanoparticles indicates the quantitative recovery of TNP from 100.74 % to 101.00 %. The electrochemical test, ultraviolet-visible absorption spectra, excitation and emission spectra, and time-resolved PL spectra were investigated to explore the PL sensing mechanism. As a result, it is found that the fluorescence inner filter effect might be the predominant quenching mechanism during the detection of nitrophenolic compounds such as TNP and 4-nitrophenol (4-NP).

SELECTION OF CITATIONS
SEARCH DETAIL