Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.278
Filter
1.
J Hazard Mater ; 477: 135052, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39067287

ABSTRACT

The acid and redox sites of the MnCo catalysts are simultaneously fine-tuned by the addition of V. A dual-function catalyst, designated as V0.5Mn5Co5, has been constructed for the synergistic removal of NOx and volatile organic compounds under coke-oven flue gas conditions, which exhibits > 95 % NOx conversion and > 80 % N2 selectivity at 180-300 °C. Meanwhile, it removes 70 % of ethylene at 240 °C. Besides it has excellent sulfur and water resistance. The characterization results indicate that this acid-redox dual sites modulation strategy appropriately weakens the oxidation capacity of the catalysts while increasing the surface acidity of the catalysts. The catalyst mainly performs SCR reaction through the E-R mechanism, and N2O is generated through the transition dehydrogenation of NH3 and NSCR reaction. Ethylene is first adsorbed on the catalyst surface then oxidized to form carbonate species, and finally decomposed to CO2. Ethylene oxidation follows the MvK mechanism. There is a competitive adsorption between NH3 and C2H4, and a mutual inhibition between the SCR reaction and the ethylene oxidation reaction. V0.5Mn5Co5 exhibits excellent synergistic removal of NOx and VOCs in coke oven flue gas compared with commercial VWTi catalysts, which indicates great promise for industrial application.

2.
Foodborne Pathog Dis ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082080

ABSTRACT

Nutritional manipulations can reduce the detrimental effects of heat stress on animal health and production. Akkermansia muciniphila (AM) is an innovative beneficial bacteria and can be used for conventional use as dietary supplements and pharmaceutical application. This study aimed to investigate the effects of administering AM on gut morphology, antioxidant indices, and gut microbiome of mice during heat stress. A total of 24 BALB/c mice were randomly assigned to three groups including the control group (CON), heat stress group (HS), and AM administration under heat stress group (AM). Our results showed heat stress significantly increased the water consumption of mice. Administration of AM did not improve feed intake or weight gain. The serum levels of alanine aminotransferase and aspartate aminotransferase as well as antioxidant parameters were not different among the three groups. Heat stress decreased the jejunal villus height, and AM could reverse this effect. AM administration significantly increased the relative abundance of Verrucomicrobiota at the phylum level. At the genus level, heat stress and AM groups tended to have a lower abundance of Alloprevotella. In addition, AM tended to increase the relative abundance of [Eubacterium]_xylanophilum_group in comparison with the other two groups. In summary, administration of AM can alleviate the damage of heat stress to the jejunum. However, it has no effect on serum antioxidant parameters, and its effect on the cecal microbiota is limited.

3.
Front Chem ; 12: 1416329, 2024.
Article in English | MEDLINE | ID: mdl-38947956

ABSTRACT

5-Hydroxymethylfurfural (HMF), serving as a versatile platform compound bridging biomass resource and the fine chemicals industry, holds significant importance in biomass conversion processes. The electrooxidation of HMF plays a crucial role in yielding the valuable product (2,5-furandicarboxylic acid), which finds important applications in antimicrobial agents, pharmaceutical intermediates, polyester synthesis, and so on. Defect engineering stands as one of the most effective strategies for precisely synthesizing electrocatalytic materials, which could tune the electronic structure and coordination environment, and further altering the adsorption energy of HMF intermediate species, consequently increasing the kinetics of HMF electrooxidation. Thereinto, the most routine and effective defect are the anionic vacancies and cationic vacancies. In this concise review, the catalytic reaction mechanism for selective HMF oxidation is first elucidated, with a focus on the synthesis strategies involving both anionic and cationic vacancies. Recent advancements in various catalytic oxidation systems for HMF are summarized and synthesized from this perspective. Finally, the future research prospects for selective HMF oxidation are discussed.

4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 776-782, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946357

ABSTRACT

OBJECTIVE: To retrospectively analyze the clinical characteristics of 193 Chinese patients with McCune-Albright syndrome (MAS). METHODS: By using keywords "McCune-Albright syndrome", "Albright syndrome", or " fibrous dysplasia " as the search terms, 193 cases of MAS reported in China from January 1990 to November 2022 from the Wanfang data, CNKI, VIP, PubMed, and Embase databases were obtained, and their clinical data was retrospectively analyzed. Intergroup comparisons were carried out by using t test, Mann-Whitney U test, and X2 test. RESULTS: The 193 MAS patients had included 42 males and 151 females, with the median first-visit age of females being younger than males. The typical triad group had accounted for 46.1% of patients, and the middle first-visit and diagnosis age was younger than the atypical group. The primary reason for first-visit in males of MAS was fibrous dysplasia (FD), whilst that in females of MAS was peripheral precocious puberty (PPP). FD has occurred in 84.5% of the patients, with an average age of onset age being 6.1 years old, and 90% was ≤ 16 years of age. Endocrine hyperfunction was found in 79.3% of the patients, with a higher proportion in females compared with males (P < 0.05). Pituitary involvement was seen in 21.8% of the patients, and the incidence of craniofacial FD and cranial nerve compression was significantly higher in those with elevated growth hormone (GH) than without (P < 0.05). Café-au-Lait Spots were noted in 86.5% of the patients, and 28.3% (28/99) had located on the different side of FD. CONCLUSION: Most MAS patients had atypical manifestations and multi-systemic involvement. It is more common and occurs earlier in females. The most common reasons for initial diagnosis in male and female patients were FD and PPP, respectively. Patients with elevated GH should be examined for cranial nerve compression.


Subject(s)
Fibrous Dysplasia, Polyostotic , Humans , Fibrous Dysplasia, Polyostotic/genetics , Male , Female , Child , Adolescent , China , Child, Preschool , Adult , Retrospective Studies , Young Adult , Infant , Asian People/genetics , Middle Aged , East Asian People
5.
Int J Biol Macromol ; 276(Pt 1): 133897, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019368

ABSTRACT

Liquid metal (LM) based electromagnetic interference (EMI) shielding materials with high conductivity and continuous deformation capacity are important needs for meeting modern advanced electronic equipment. However, an independent free-standing film with LM is difficult to achieve due to its unique fluidity properties. Here, a simple alternating filtration film-forming method was utilized to orderly construct a sandwiched EMI shielding film with LM stabilized by bio-based oxhide gelatin (gel) as the intermediate conductive layer, and two films of aramid nanofibers/oxhide gel (ANF/gel) as the external insulating protective layers. This design not only prevents LM from being exposed to environmental conditions, but also reduces the risk of chemical corrosion in practical applications. Under optimal LM addition conditions, the sandwiched film (0.3-3 L) exhibited better EMI shielding performance of 50.4 dB in the X-band than the blended film (0.7 dB), as well as excellent mechanical properties (tensile strength of 65.8 MPa, strain 8.6 %). More importantly, the sandwiched film still maintained reliable EMI shielding performance after being experienced largely physical deformation. This study provides a new solution for preparing LM-based EMI shielding composites, and is expected to arouse pursuit of high EMI shielding effects of bio-based gel while also paying attention to their safety.

6.
ESC Heart Fail ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054757

ABSTRACT

AIMS: We aim to investigate the causal effect of blood lipids mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in cardiovascular disease (CVD) using Mendelian randomization (MR). METHODS AND RESULTS: A two-sample two-step MR study was conducted to evaluate the association of SGLT2 inhibition with CVDs and the mediation effects of blood lipids linking SGLT2 inhibition with CVDs. Genetic instruments for SGLT2 inhibition were identified as genetic variants, which were associated with the expression of the SLC5A2 gene and glycated haemoglobin level (HbA1c). SGLT2 inhibition was associated with reduced risk of heart failure (HF) (OR 0.44 [95% CI 0.32-0.61]; P = 6.0 × 10-7), atrial fibrillation (AF) (0.47 [0.37-0.61]; P = 1.81 × 10-8), coronary artery disease (CAD) (0.47 [0.30-0.73]; P = 7.46 × 10-4), myocardial infarction (MI) (0.30 [0.15-0.61]; P = 7.44 × 10-4), any stroke (AS) (0.28 [0.18-0.42]; P = 1.14 × 10-9), and ischaemic stroke (IS) (0.27 [0.17-0.44]; P = 1.97 × 10-7). Our results indicated that the proportion mediated of the mediating effect of total cholesterol was 1.7% (OR 0.99 [95% CI 0.98, 0.99], P = 0.004), 4.7% (0.96 [0.95, 0.98], P = 0.002), and 2.7% (0.97 [0.95, 0.98], P = 0.002) in the association between SGLT2 inhibition and the risk of HF, CAD, and MI, respectively. For low-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 2.2% for HF (OR 0.98 [95% CI 0.98, 0.99], P = 0.003), 8.6% for CAD (0.93 [0.91, 0.95], P = 5.74 × 10-4), and 5.0% for MI (0.95 [0.94, 0.96], P = 6.97 × 10-4). For non-high-density lipoprotein cholesterol, the proportion mediated of the mediating effect was 3.4% for HF (OR 0.98 [95% CI 0.97, 0.98], P = 4.42 × 10-6), 11.8% for CAD (0.92 [0.90, 0.93], P = 7.23 × 10-8), 5.7% for MI (0.94 [0.92, 0.95], P = 8.17 × 10-7), 1.5% for AS (0.98 [0.98, 0.99], P = 0.001), and 1.4% for IS (0.98 [0.98, 0.99], P = 0.004). CONCLUSIONS: Our study showed the association of SGLT2 inhibition with the reduced risk of CVDs and blood lipids might mediate this association.

7.
Injury ; 55(8): 111710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38976928

ABSTRACT

OBJECTIVE: Deep vein thrombosis (DVT) provoked by orthopedic trauma is increasing in pediatric hospitalized patients. The purpose of our study is to identify the prevalence of acute DVT in pediatric and adolescent orthopedic trauma hospitalized patients and focus on evaluating the anticoagulation strategies and the clinical outcomes after a confirmed acute DVT. METHODS: Patients (age ≤18 years) with a confirmed acute DVT admitted for orthopedic trauma between September 2017 and December 2023 were included. Patients were classified into the non-anticoagulation (NA), the in-hospital anticoagulation (IHA), and the in-and-out-of-hospital anticoagulation (IOHA) groups based on their anticoagulation regimen. Efficacy outcomes were the venous thromboembolism (VTE) recurrence within 3 months and change in thrombus burden by repeat imaging at 2 weeks after discharge compared with baseline. Safety outcomes were major bleeding (MB) and clinically relevant non-major bleeding (CRNMB) within 3 months. RESULTS: Of the 11,206 pediatric and adolescent orthopedic trauma inpatients, 94(median age,16 [15, 18] years) were diagnosed with acute DVT, with an incidence of 0.84 %, of which 8(8.5 %) received NA, 41(43.6 %) received IHA, and 45(47.9 %) received IOHA. After the diagnosis of DVT, of patients who received anticoagulation, 97.9 % were treated with rivaroxaban as an oral anticoagulant, and 71.7 % received an LMWH course of ≥5 days before starting rivaroxaban therapy. With a median anticoagulation course of 22(8, 37.3) days, the duration in the IOHA was significantly longer than the IHA (37 days vs. 8 days, p = 0.000). No patients experienced recurrent VTE and MB at 3 months, and 1 received IOHA had a CRNMB event (0 % vs. 0 % vs. 2.2 %, p = 1.000). Thrombus resolution was significantly higher in patients who received anticoagulation therapy (IOHA 91.1 % vs. IHA 80.5 % vs. NA 37.5 %, P = 0.002), and thrombus-no relevant change was significantly lower in patients who received the IOHA strategy compared with the other groups (4.4 % vs. 19.5 % vs. 62.5 %, P = 0.000). CONCLUSIONS: A rivaroxaban-predominant IOHA strategy significantly reduced the thrombotic burden without increasing the risk of bleeding for the treatment of DVT in adolescents with orthopedic trauma. Duration of anticoagulation therapy <6 weeks appears appropriate for adolescent orthopedic trauma-related DVT.


Subject(s)
Rivaroxaban , Venous Thrombosis , Humans , Adolescent , Rivaroxaban/therapeutic use , Rivaroxaban/adverse effects , Female , Male , Venous Thrombosis/epidemiology , Venous Thrombosis/drug therapy , Venous Thrombosis/prevention & control , Incidence , Child , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/adverse effects , Retrospective Studies , Hospitalization/statistics & numerical data , Anticoagulants/therapeutic use , Anticoagulants/adverse effects , Treatment Outcome , Hemorrhage/chemically induced , Hemorrhage/epidemiology
8.
Gut ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38960582

ABSTRACT

OBJECTIVE: Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome. DESIGN: We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified. RESULTS: Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion. CONCLUSION: Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.

9.
Sci One Health ; 3: 100068, 2024.
Article in English | MEDLINE | ID: mdl-39077382

ABSTRACT

Haemaphysalis ticks are pathogenic vectors that threaten human and animal health and were identified in Chongming, the third largest island in China. To understand the distribution of these ticks and determine their potential invasion risk, this study aimed to identify the habitat suitability of the dominant tick H. flava based on natural environmental factors. Geographic information system (GIS) images were combined with sample points from tick investigations to map the spatial distribution of H. flava. Data on 19 bioclimatic variables, environmental variables, and satellite-based landscapes of Chongming Island were retrieved to create a landcover map related to natural environmental determinants of H. flava. These data included 38 sites associated with the vectors to construct species distribution models with MaxEnt, a model based on the maximum entropy principle, and to predict habitat suitability for H. flava on Chongming Island in 2050 and 2070 under different climate scenarios. The model performed well in predicting the H. flava distribution, with a training area under the curve of 0.84 and a test area under the curve of 0.73. A habitat suitability map of the whole study area was created for H. flava. The resulting map and natural environment analysis highlighted the importance of the normalized difference vegetation index and precipitation in the driest month for the bioecology of H. flava, with 141.61 km2 (11.77%), 282.94 km2 (23.35%), and 405.30 km2 (33.69%) of highly, moderately, and poorly suitable habitats, respectively. The distribution decreased by 135.55 km2 and 138.82 km2 in 2050 and 2070, respectively, under the shared socioeconomic pathway (SSP) 1.2.6 climate change scenario. However, under SSP 5.8.5, the total area will decrease by 128.5 km2 in 2050 and increase by 151.64 km2 in 2070. From a One Health perspective, this study provides good knowledge that will guide tick control efforts to prevent the spread of Haemaphysalis ticks or transmission risk of Haemaphysalis-borne infections at the human-animal-environment interface on the island.

10.
Front Oncol ; 14: 1442627, 2024.
Article in English | MEDLINE | ID: mdl-39070145

ABSTRACT

Background and purpose: Current studies have substantiated the sparing effect of ultra-high dose rate irradiation (FLASH) in various organs including the brain, lungs, and intestines. Whether this sparing effect extends to esophageal tissue remains unexplored. This study aims to compare the different responses of esophageal tissue in histological and protein expression levels following conventional dose rate irradiation (CONV) and FLASH irradiation to ascertain the presence of a sparing effect. Methods and materials: C57 female mice were randomly divided into three groups: control, CONV, and FLASH groups. The chest region of the mice in the radiation groups was exposed to a prescribed dose of 20 Gy using a modified electron linear accelerator. The CONV group received an average dose rate of 0.1 Gy/s, while the FLASH group received an average dose rate of 125 Gy/s. On the 10th day after irradiation, the mice were euthanized and their esophagi were collected for histopathological analysis. Subsequently, label-free proteomic quantification analysis was performed on esophageal tissue. The validation process involved analyzing transmission electron microscopy images and utilizing the parallel reaction monitoring method. Results: Histopathology results indicated a significantly lower extent of esophageal tissue damage in the FLASH group compared to the CONV group (p < 0.05). Label-free quantitative proteomic analysis revealed that the sparing effect observed in the FLASH group may be attributed to a reduction in radiation-induced protein damage associated with mitochondrial functions, including proteins involved in the tricarboxylic acid cycle and oxidative phosphorylation, as well as a decrease in acute inflammatory responses. Conclusions: Compared with CONV irradiation, a sparing effect on esophageal tissue can be observed after FLASH irradiation. This sparing effect is associated with alleviated mitochondria damage and acute inflammation.

11.
Cell Death Dis ; 15(6): 400, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849380

ABSTRACT

Emerging evidence demonstrates that pyroptosis has been implicated in the pathogenesis of asthma. Gasdermin D (GSDMD) is the pyroptosis executioner. The mechanism of GSDMD in asthma remains unclear. The aim of this study was to elucidate the potential role of GSDMD in asthmatic airway inflammation and remodeling. Immunofluorescence staining was conducted on airway epithelial tissues obtained from both asthma patients and healthy controls (HCs) to evaluate the expression level of N-GSDMD. ELISA was used to measure concentrations of cytokines (IL-1ß, IL-18, IL-17A, and IL-10) in serum samples collected from asthma patients and healthy individuals. We demonstrated that N-GSDMD, IL-18, and IL-1ß were significantly increased in samples with mild asthma compared with those from the controls. Then, wild type and Gsdmd-knockout (Gsdmd-/-) mice were used to establish asthma model. We performed histopathological staining, ELISA, and flow cytometry to explore the function of GSDMD in allergic airway inflammation and tissue remodeling in vivo. We observed that the expression of N-GSDMD, IL-18, and IL-1ß was enhanced in OVA-induced asthma mouse model. Gsdmd knockout resulted in attenuated IL-18, and IL-1ß production in both bronchoalveolar lavage fluid (BALF) and lung tissue in asthmatic mice. In addition, Gsdmd-/- mice exhibit a significant reduction in airway inflammation and remodeling, which might be associated with reduced Th17 inflammatory response and M2 polarization of macrophages. Further, we found that GSDMD knockout may improve asthmatic airway inflammation and remodeling through regulating macrophage adhesion, migration, and macrophage M2 polarization by targeting Notch signaling pathway. These findings demonstrate that GSDMD deficiency profoundly alleviates allergic inflammation and tissue remodeling. Therefore, GSDMD may serve as a potential therapeutic target against asthma.


Subject(s)
Asthma , Disease Models, Animal , Intracellular Signaling Peptides and Proteins , Mice, Knockout , Ovalbumin , Phosphate-Binding Proteins , Animals , Asthma/genetics , Asthma/pathology , Asthma/metabolism , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Humans , Airway Remodeling , Female , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Male , Cytokines/metabolism , Pyroptosis , Lung/pathology , Lung/metabolism , Gasdermins
13.
Nat Commun ; 15(1): 4995, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862474

ABSTRACT

RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , DNA-Binding Proteins , Liver Neoplasms , Signal Transduction , TEA Domain Transcription Factors , Transcription Factors , Ubiquitination , YAP-Signaling Proteins , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Humans , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , TEA Domain Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Disease Progression , Mice, Nude , Cell Movement/genetics , Male , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Female , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
14.
Huan Jing Ke Xue ; 45(6): 3389-3401, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897760

ABSTRACT

Clarifying the mechanism of influence of urban form on carbon emissions is an important prerequisite for achieving urban carbon emission reduction. Taking the Yangtze River Economic Belt as an example, this study elaborated on the general mechanism of urban form on carbon emissions, used multi-source data to quantitatively evaluate the urban form, and explored the impacts of urban form indicators on carbon emissions from 2005 to 2020 at global and sub-regional scales with the help of spatial econometric models and geodetector, respectively. The results showed that:① The carbon emissions of the Yangtze River Economic Belt increased from 2 365.31 Mt to 4 230.67 Mt, but the growth rate gradually decreased. Its spatial distribution pattern was bipolar, with high-value areas mainly distributed in core cities such as Shanghai and Chongqing and low-value areas concentrated in the western regions of Sichuan and Yunnan. ② The area of construction land in the study area expanded over the past 15 years, but the population density of construction land had been decreasing. The degree of urban fragmentation was decreasing, and the difference between cities was also progressively narrowing. The average regularity of urban shape improved, and the compactness increased significantly. ③ All indicators of urban scale had significant positive effects on carbon emissions at the global scale, urban fragmentation had a significant negative effect in 2005, and the effective mesh size (MESH) indicator of urban compactness showed a significant negative correlation with carbon emissions in the study period. ④ Total class area, patch density, and effective mesh size had the most significant impacts on carbon emissions in upstream cities. Effective mesh size, mean perimeter-area ratio, and total class area had higher influences in midstream cities. Effective mesh size, percentage of like adjacencies, and largest patch index were the key factors to promote carbon reduction in downstream cities. Cities in different regions should comprehensively consider the impacts of various urban form indicators on carbon emissions and then optimize their urban form to promote sustainable development.

15.
Curr Microbiol ; 81(8): 243, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935166

ABSTRACT

Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.


Subject(s)
Bacillus subtilis , Clostridium Infections , Clostridium perfringens , Gastrointestinal Microbiome , Probiotics , Animals , Clostridium Infections/immunology , Clostridium Infections/microbiology , Bacillus subtilis/genetics , Clostridium perfringens/immunology , Mice , Probiotics/administration & dosage , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Intestines/immunology , Swine , Diarrhea/microbiology , Diarrhea/immunology , Feces/microbiology , Disease Models, Animal
16.
Drug Des Devel Ther ; 18: 2287-2297, 2024.
Article in English | MEDLINE | ID: mdl-38915869

ABSTRACT

Objective: Catalpol, as a natural medicine small-molecule drug, has been proven to have anti-inflammatory and antioxidant pharmacological effects. Methods: The effect of catalpol on oxidative damage of mouse epidermal fibroblast L929 model and its mechanism were investigated by using hydrogen peroxide model, CCK8 method, flow cytometry, and Western blot. Results: The effect of catalpol on Nrf2/HO-1 signaling pathway was further studied to improve oxidative stress in cell models. The results showed that catalpol had no cytotoxicity to L929 cells, and inhibited the apoptosis of L929 cells after oxidative damage in a concentration-dependent manner, thus playing a role in cell protection. The oxidative damage of cells was inhibited by up-regulating the expression of the signature protein of Nrf2/HO-1 signaling pathway and inhibiting the interstitial formation of cells. Conclusion: This study is a preliminary study on the protective function of catalpol against oxidation and apoptosis in dermal fibroblasts, which can provide a theoretical basis and drug guidance for promoting skin wound healing in the later stage.


Subject(s)
Fibroblasts , Heme Oxygenase-1 , Iridoid Glucosides , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Iridoid Glucosides/pharmacology , NF-E2-Related Factor 2/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Oxidative Stress/drug effects , Animals , Mice , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Dose-Response Relationship, Drug , Apoptosis/drug effects , Cells, Cultured , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Antioxidants/pharmacology , Skin/drug effects , Skin/metabolism , Skin/pathology , Structure-Activity Relationship , Cell Line , Membrane Proteins
17.
J Ethnopharmacol ; 333: 118454, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38852638

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY: This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS: The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rß2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS: BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rß2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION: By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.


Subject(s)
Drugs, Chinese Herbal , Lymphocytes , Rhinitis, Allergic , Animals , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/immunology , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred BALB C , Immunity, Innate/drug effects , Inflammation/drug therapy , Female , Male , Signal Transduction/drug effects , Cell Plasticity/drug effects , Repressor Proteins , Tumor Suppressor Proteins
18.
Int J Biol Macromol ; 273(Pt 2): 133082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878923

ABSTRACT

The Shark-derived immunoglobulin new antigen receptors (IgNARs) have gained increasing attention for their high solubility, exceptional thermal stability, and intricate sequence variation. In this study, we immunized whitespotted bamboo shark (Chiloscyllium plagiosum) to create phage display library of variable domains of IgNAR (VNARs) for screening against Human Serum Albumin (HSA), a versatile vehicle in circulation due to its long in vivo half-life. We identified two HSA-binding VNAR clones, 2G5 and 2G6, and enhanced their expression in E. coli with the FKPA chaperone. 2G6 exhibited a strong binding affinity of 13 nM with HSA and an EC50 of 1 nM. In vivo study with a murine model further provided initial validation of 2G6's ability to prolong circulation time by binding to HSA. Additionally, we employed computational molecular docking to predict the binding affinities of both 2G6 and its humanized derivative, H2G6, to HSA. Our analysis unveiled that the complementarity-determining regions (CDR1 and CDR3) are pivotal in the antigen recognition process. Therefore, our study has advanced the understanding of the potential applications of VNARs in biomedical research aimed at extending drug half-life, holding promise for future therapeutic and diagnostic progressions.


Subject(s)
Molecular Docking Simulation , Serum Albumin, Human , Sharks , Animals , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Mice , Receptors, Antigen/chemistry , Receptors, Antigen/genetics , Receptors, Antigen/metabolism , Protein Binding , Peptide Library , Amino Acid Sequence
19.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920280

ABSTRACT

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

20.
Plant J ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865101

ABSTRACT

Anthocyanin is an important pigment responsible for plant coloration and beneficial to human health. Kale (Brassica oleracea var. acephala), a primary cool-season flowers and vegetables, is an ideal material to study anthocyanin biosynthesis and regulation mechanisms due to its anthocyanin-rich leaves. However, the underlying molecular mechanism of anthocyanin accumulation in kale remains poorly understood. Previously, we demonstrated that BoDFR1 is a key gene controlling anthocyanin biosynthesis in kale. Here, we discovered a 369-bp InDel variation in the BoDFR1 promoter between the two kale inbred lines with different pink coloration, which resulted in reduced transcriptional activity of the BoDFR1 gene in the light-pink line. With the 369-bp insertion as a bait, an R2R3-MYB repressor BoMYB4b was identified using the yeast one-hybrid screening. Knockdown of the BoMYB4b gene led to increased BoDFR1 expression and anthocyanin accumulation. An E3 ubiquitin ligase, BoMIEL1, was found to mediate the degradation of BoMYB4b, thereby promoting anthocyanin biosynthesis. Furthermore, the expression level of BoMYB4b was significantly reduced by light signals, which was attributed to the direct repression of the light-signaling factor BoMYB1R1 on the BoMYB4b promoter. Our study revealed that a novel regulatory module comprising BoMYB1R1, BoMIEL1, BoMYB4b, and BoDFR1 finely regulates anthocyanin accumulation in kale. The findings aim to establish a scientific foundation for genetic improvement of leaf color traits in kale, meanwhile, providing a reference for plant coloration studies.

SELECTION OF CITATIONS
SEARCH DETAIL