Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
J Hazard Mater ; 479: 135514, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39243542

ABSTRACT

The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.


Subject(s)
Anti-Bacterial Agents , Iron , Wastewater , Water Pollutants, Chemical , Anti-Bacterial Agents/chemistry , Wastewater/chemistry , Anaerobiosis , Iron/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Waste Disposal, Fluid/methods , Biodegradation, Environmental , Water Purification/methods
2.
Inorg Chem ; 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344080

ABSTRACT

Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.

3.
Nano Lett ; 24(37): 11367-11375, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39225502

ABSTRACT

The anode-free lithium metal battery (AF-LMB) demonstrates the emerging battery chemistry, exhibiting higher energy density than the existing lithium-ion battery and conventional LMB empirically. A systematic step-by-step while bottom-up calculation system is first developed to quantitatively depict the energy gap from theory to practice. The attainable high energy of AF-LMB necessitates a homogeneous Li+ flux on the anode side to achieve an improved Li reversibility against inventory loss. On such basis, a lithiophilic Cu3P-decorated 3D copper foil to promote dendrite-free lithium deposition is further reported. The phosphorized surface of high affinity toward Li+ incorporating the nanostructure of abundant nucleation sites synergistically regulates the Li nucleation/growth behavior, extending the cycling lifespan of high-loading AF-LMBs. The processed foil featuring lightweight and ultrathin merits further increases the energy density, both gravimetrically and volumetrically. This study provides a novel scheme for simultaneously realizing the uniform deposition of lithium and increasing the energy density of future AF-LMBs.

4.
FASEB J ; 38(17): e70028, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39235355

ABSTRACT

Pancreatic cancer is a highly aggressive and lethal carcinoma. Circular RNAs (circRNAs) serve key regulatory functions in pancreatic cancer. Ferroptosis was induced by erastin treatment and analyzed by examining malondialdehyde (MDA), iron, Fe2+ and glutathione (GSH). C11-BODIPY 581/591 was used to stain cells for analyzing lipid peroxidation. RNA immunoprecipitation, pull-down and chromatin immunoprecipitation assays were applied to evaluate intermolecular interaction. Mice received subcutaneous injection of pancreatic cancer cells as a model of subcutaneous tumor for in vivo tests. Circ_0005397 was abundantly expressed in pancreatic cancer, and its upregulation was associated with low survival of patients with pancreatic cancer. Circ_0005397 expression was induced by EIF4A3. PCBP2 was highly expressed in pancreatic cancer, and circ_0005397 and PCBP2 were positively correlated in patients with pancreatic cancer. Circ_0005397 knockdown sensitized pancreatic carcinoma cells to ferroptosis via downregulating PCBP2. Circ_0005397 promoted PCBP2 transcription via facilitating the binding of KAT6A and H3K9ac to PCBP2 promoter. Silencing of circ_0005397 reduced tumor growth by enhancing erastin-induced ferroptosis in vivo. EIF4A3-induced circ_0005397 inhibited erastin-induced ferroptosis in pancreatic cancer by promoting PCBP2 expression through KAT6A and H3K9ac.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , RNA, Circular , RNA-Binding Proteins , Ferroptosis/genetics , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mice, Nude , Male , Up-Regulation , Mice, Inbred BALB C
5.
Adv Healthc Mater ; : e2402568, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126360

ABSTRACT

Iron phosphide/carbon (FeP/C) serving as electrocatalysts exhibit excellent activity in oxygen reduction reaction (ORR) process. H2O2 catalyzed by peroxidase (POD) is similar to the formation of new electron transfer channels and the optimization of adsorption of oxygen-containing intermediates or desorption of products in ORR process. However, it is still a challenge to discover FeP/C with enhanced POD-like catalytic activity in the electrocatalytic database for biocatalysis. The discovery of FeP/carbon dots (FeP/CDs) nanozymes driven by electrocatalytic activity for enhanced POD-like ability is demonstrated. FeP/CDs derived from CDs-Fe3+ chelates show enhanced POD-like catalytic and antibacterial activity. FeP/CDs exhibit enhanced POD-like activities with a specific activity of 31.1 U mg-1 that is double higher than that of FeP. The antibacterial ability of FeP/CDs nanozymes with enhanced POD-like activity is 98.1%. The antibacterial rate of FeP/CDs nanozymes (250 µg mL-1) increased by 5%, 15%, and 36% compared with FeP, Fe2O3/CDs, and Cu3P/CDs nanozymes, respectively. FeP/CDs nanozymes will attract more efforts to discover or screen transition metal phosphide/C nanozymes with enhanced POD-like catalytic activity for biocatalysis in the electrocatalytic database.

6.
Water Res ; 263: 122121, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39094200

ABSTRACT

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.


Subject(s)
Chloramphenicol , Ferrosoferric Oxide , Methane , Wastewater , Wastewater/chemistry , Ferrosoferric Oxide/chemistry , Anaerobiosis , Methane/metabolism , Carbon , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis
7.
Environ Sci Pollut Res Int ; 31(42): 54938-54949, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39215924

ABSTRACT

Greenhouse gas (GHG) emissions, particularly anthropogenic emissions, are the primary drivers of climate change. The cultivation of microalgae represents a highly promising strategy for mitigating atmospheric GHG levels. The growth characteristics and GHG mitigation capabilities of Tetradesmus obliquus PF3 were investigated in domestic wastewater at a thermal power plant. The maximum cell density and productivity were 1.52 ± 0.01 g L-1 and 0.33 ± 0.01 g L-1 day-1, respectively. Utilizing a serial configuration of two reactors, the elimination efficiency of NO and CO2 attained values of 78 ± 4% and 14 ± 4%, respectively. NO concentration at the outlet was less than 24.6 ± 2.9 mg m-3, meeting the latest Chinese discharge limits. Besides, the recovery efficiency of NO and CO2 increased to 77 ± 8% and 2.24 ± 0.04%, respectively, compared to that of the single reactor (40 ± 3%, 0.9 ± 0.0%). A removal efficiency of over 90% was achieved for TN and TP in domestic wastewater. The concentrations of COD (76.5 mg L-1), NH4+-N (0.9 mg L-1), TN(6.31 mg L-1), and TP (0.35 mg L-1) in effluent were below the thresholds of 100 mg L-1, 25 mg L-1, none data, and 3 mg L-1, respectively, complying with the Chinese Discharge Standard (Class II criteria set forth) for Municipal Wastewater Treatment Plants Pollutants. The harvested biomass exhibited a high content of carbohydrates and proteins, making it a viable feedstock for biofuels and bio-fertilizers. Our results demonstrate that Tetradesmus obliquus PF3-based flue gas treatment technology can simultaneously realize GHG removal, wastewater bio-remediation, and biomass recovery.


Subject(s)
Carbon Dioxide , Microalgae , Wastewater , Wastewater/chemistry , Nitric Oxide , Greenhouse Gases
8.
Front Immunol ; 15: 1405146, 2024.
Article in English | MEDLINE | ID: mdl-38947338

ABSTRACT

Background: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced computed tomography (CT) and combined with clinical data to predict the major pathological response to NIT in ESCC patients. Methods: This retrospective study included 82 ESCC patients who were randomly divided into the training group (n = 57) and the validation group (n = 25). Radiomic features were derived from the tumor region in enhanced CT images obtained before treatment. After feature reduction and screening, radiomics was established. Logistic regression analysis was conducted to select clinical variables. The predictive model integrating radiomics and clinical data was constructed and presented as a nomogram. Area under curve (AUC) was applied to evaluate the predictive ability of the models, and decision curve analysis (DCA) and calibration curves were performed to test the application of the models. Results: One clinical data (radiotherapy) and 10 radiomic features were identified and applied for the predictive model. The radiomics integrated with clinical data could achieve excellent predictive performance, with AUC values of 0.93 (95% CI 0.87-0.99) and 0.85 (95% CI 0.69-1.00) in the training group and the validation group, respectively. DCA and calibration curves demonstrated a good clinical feasibility and utility of this model. Conclusion: Enhanced CT image-based radiomics could predict the response of ESCC patients to NIT with high accuracy and robustness. The developed predictive model offers a valuable tool for assessing treatment efficacy prior to initiating therapy, thus providing individualized treatment regimens for patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Machine Learning , Neoadjuvant Therapy , Tomography, X-Ray Computed , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Male , Female , Neoadjuvant Therapy/methods , Tomography, X-Ray Computed/methods , Esophageal Neoplasms/therapy , Esophageal Neoplasms/diagnostic imaging , Middle Aged , Retrospective Studies , Aged , Immunotherapy/methods , Nomograms , Treatment Outcome , Adult , Radiomics
9.
Sci Total Environ ; 946: 174332, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38950630

ABSTRACT

Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.


Subject(s)
Electrodes , Electron Transport , Bacteria/metabolism , Shewanella/metabolism , Bioelectric Energy Sources , Biosensing Techniques/methods
10.
China CDC Wkly ; 6(25): 605-613, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38933038

ABSTRACT

What is known about this topic?: H10 avian influenza viruses circulate in wild birds and can reassort with other subtypes. H10N8 and H10N3 have previously caused sporadic human infections in China. What is added by this report?: This report documents the first human case of co-infection with avian-origin H10N5 and seasonal H3N2 influenza viruses. Epidemiological investigations identified H10N5 in environmental samples linked to the patient, but no transmission to close contacts occurred. What are the implications for public health practice?: Enhanced surveillance of avian influenza in live poultry markets and poultry populations is crucial for thoroughly characterizing the epidemiology, transmission, and pathogenesis of H10N5 viruses. Strengthening assessments of outbreak control measures is essential to guide effective management.

11.
Chin Med J (Engl) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915221

ABSTRACT

BACKGROUND: Epidemiological data on chronic diarrhea in the Chinese population are lacking, and the association between obesity and chronic diarrhea in East Asian populations remains inconclusive. This study aimed to investigate the prevalence of chronic diarrhea and its association with obesity in a representative community-dwelling Chinese population. METHODS: This cross-sectional study was based on a multistage, randomized cluster sampling involving 3503 residents aged 20-69 years from representative urban and rural communities in Beijing. Chronic diarrhea was assessed using the Bristol Stool Form Scale (BSFS), and obesity was determined based on body mass index (BMI). Logistic regression analysis and restricted cubic splines were used to evaluate the relationship between obesity and chronic diarrhea. RESULTS: The standardized prevalence of chronic diarrhea in the study population was 12.88%. The average BMI was 24.67 kg/m 2 . Of all the participants, 35.17% (1232/3503) of participants were classified as overweight and 16.13% (565/3503) as obese. After adjustment for potential confounders, individuals with obesity had an increased risk of chronic diarrhea as compared to normal weight individuals (odds ratio = 1.58, 95% confidence interval: 1.20-2.06). A nonlinear association between BMI and the risk of chronic diarrhea was observed in community residents of males and the overall participant group ( P  = 0.026 and 0.017, respectively). CONCLUSIONS: This study presents initial findings on the prevalence of chronic diarrhea among residents of Chinese communities while offering substantiated evidence regarding the significant association between obesity and chronic diarrhea. These findings offer a novel perspective on gastrointestinal health management.

12.
J Hazard Mater ; 474: 134701, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824774

ABSTRACT

Coking wastewater (CWW) treatment is difficult due to its complex composition and high biological toxicity. Iron-carbon mediators was used to enhance the treatment of CWW through iron-carbon microelectrolysis (ICME). The results indicated that the removal rate of COD and phenolic compounds were enhanced by 24.1 % and 23.5 %, while biogas production and methane content were promoted by 50 % and 7 %. Microbial community analysis indicated that iron-carbon mediators had a transformative impact on the reactor's performance and dependability by enriching microorganisms involved in direct and indirect electron transfer, such as Anaerolineae and Methanothrix. The mediator also produced noteworthy gains in LB-EPS and TB-EPS, increasing by roughly 109.3 % and 211.6 %, respectively. PICRISt analysis demonstrated that iron-carbon mediators effectively augment the abundance of functional genes associated with metabolism, Citrate cycle, and EET pathway. This study provides a new approach for CWW treatment.


Subject(s)
Bioreactors , Carbon , Coke , Iron , Wastewater , Wastewater/chemistry , Iron/metabolism , Iron/chemistry , Carbon/chemistry , Carbon/metabolism , Methane/metabolism , Waste Disposal, Fluid/methods , Biofuels , Biological Oxygen Demand Analysis , Industrial Waste , Water Pollutants, Chemical/metabolism , Phenols/metabolism , Bacteria/metabolism , Bacteria/genetics
13.
Sci Rep ; 14(1): 11083, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38745087

ABSTRACT

The diagnostic accuracy of clinically significant prostate cancer (csPCa) of Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) is limited by subjectivity in result interpretation and the false positive results from certain similar anatomic structures. We aimed to establish a new model combining quantitative contrast-enhanced ultrasound, PI-RADSv2, clinical parameters to optimize the PI-RADSv2-based model. The analysis was conducted based on a data set of 151 patients from 2019 to 2022, multiple regression analysis showed that prostate specific antigen density, age, PI-RADSv2, quantitative parameters (rush time, wash-out area under the curve) were independent predictors. Based on these predictors, we established a new predictive model, the AUCs of the model were 0.910 and 0.879 in training and validation cohort, which were higher than those of PI-RADSv2-based model (0.865 and 0.821 in training and validation cohort). Net Reclassification Index analysis indicated that the new predictive model improved the classification of patients. Decision curve analysis showed that in most risk probabilities, the new predictive model improved the clinical utility of PI-RADSv2-based model. Generally, this new predictive model showed that quantitative parameters from contrast enhanced ultrasound could help to improve the diagnostic performance of PI-RADSv2 based model in detecting csPCa.


Subject(s)
Contrast Media , Nomograms , Prostatic Neoplasms , Ultrasonography , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Ultrasonography/methods , Aged , Middle Aged , Prostate-Specific Antigen/blood , Prostate/diagnostic imaging , Prostate/pathology , Aged, 80 and over
14.
Environ Sci Ecotechnol ; 21: 100411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38746776

ABSTRACT

Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO3--N and NH4+-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6). In the NO3--N enriched systems, a positive correlation was observed between the C/N ratio and total nitrogen (TN) removal efficiency, which markedly increased from 13.46 ± 2.23% to 87.00 ± 2.37% as the C/N ratio escalated from 1 to 6. Conversely, in NH4+-N enriched systems, TN removal efficiencies in the A-6 setup (33.69 ± 4.83%) were marginally 1.25 to 1.29 times higher than those in A-3 and A-1 systems, attributed to constraints in dissolved oxygen (DO) levels and alkalinity. Microbial community analysis and metabolic pathway assessment revealed that anaerobic denitrification, microbial N assimilation, and dissimilatory nitrate reduction to ammonium (DNRA) predominated in NO3--N systems with higher C/N ratios (C/N ≥ 3). In contrast, aerobic denitrification and microbial N assimilation were the primary pathways in NH4+-N systems and low C/N NO3--N systems. A mass balance approach indicated denitrification and microbial N assimilation contributed 4.12-47.12% and 8.51-38.96% in NO3--N systems, respectively, and 0.55-17.35% and 7.83-33.55% in NH4+-N systems to TN removal. To enhance N removal, strategies for NO3--N dominated systems should address carbon source limitations and electron competition between denitrification and DNRA processes, while NH4+-N dominated systems require optimization of carbon utilization pathways, and ensuring adequate DO and alkalinity supply.

15.
ACS Appl Nano Mater ; 7(8): 9020-9030, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38694722

ABSTRACT

Magnetic resonance imaging (MRI) is instrumental in the noninvasive evaluation of tumor tissues in patients subjected to chemotherapy, thereby yielding essential diagnostic data crucial for the prognosis of tumors and the formulation of therapeutic strategies. Currently, commercially available MRI contrast agents (CAs) predominantly consist of mononuclear gadolinium(III) complexes. Because there is only one Gd(III) atom per molecule, these CAs often require administration in high doses to achieve the desired contrast quality, which inevitably leads to some adverse events. Herein, we develop a six-nuclei, apoptosis-targeting T1 CA, Gd6-ZnDPA nanoprobe, which consists of a hexanuclear gadolinium nanocluster (Gd6) with an apoptosis-targeting group (ZnDPA). The amplification of Gd(III) by the hexanuclear structure generates its high longitudinal relaxivity (44.67 mM-1 s-1, 1T) and low r1/r2 ratio (0.68, 1T). Based on the Solomon-Bloembergen-Morgan (SBM) theory, this notable improvement is primarily ascribed to a long correlation tumbling time (τR). More importantly, the Gd6-ZnDPA nanoprobe shows excellent tumor apoptosis properties with an enhanced MR signal ratio (∼74%) and a long MRI imaging acquisition time window (∼48 h) in 4T1 tumor-bearing mice. This study introduces an experimental gadolinium-based CA for the potential imaging of tumor apoptosis in the context of MRI.

16.
Environ Sci Technol ; 58(22): 9471-9486, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776077

ABSTRACT

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.


Subject(s)
Wastewater , Water Purification , Electrodes , Pilot Projects , Waste Disposal, Fluid/methods
17.
Brain Res ; 1839: 149039, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38815645

ABSTRACT

Musical emotions have received increasing attention over the years. To better recognize the emotions by brain-computer interface (BCI), the random music-playing and sequential music-playing experimental paradigms are proposed and compared in this paper. Two experimental paradigms consist of three positive pieces, three neutral pieces and three negative pieces of music. Ten subjects participate in two experimental paradigms. The features of electroencephalography (EEG) signals are firstly analyzed in the time, frequency and spatial domains. To improve the effect of emotion recognition, a recognition model is proposed with the optimal channels selecting by Pearson's correlation coefficient, and the feature fusion combining differential entropy and wavelet packet energy. According to the analysis results, the features of sequential music-playing experimental paradigm are more different among three emotions. The classification results of sequential music-playing experimental paradigm are also better, and its average results of positive, neutral and negative emotions are 78.53%, 72.81% and 77.35%, respectively. The more obvious the changes of EEG induced by the emotions, the higher the classification accuracy will be. After analyzing two experimental paradigms, a better way for music to induce the emotions can be explored. Therefore, our research offers a novel perspective on affective BCIs.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Emotions , Music , Humans , Music/psychology , Emotions/physiology , Electroencephalography/methods , Male , Female , Young Adult , Adult , Brain/physiology , Auditory Perception/physiology , Acoustic Stimulation/methods
18.
J Hazard Mater ; 470: 134259, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626687

ABSTRACT

Seeking for a safe, efficient, inexpensive, and eco-friendly oxidizer is always a big challenge for in-situ chemical oxidation (ISCO) technology. This study adopted the potassium peroxoborate (PPB), a novel peroxide, for soil remediation for the first time. PPB based chemical oxidation system (PPB-CO) could efficiently degrade polycyclic aromatic hydrocarbons (PAHs) without other reagents added, reaching 72.1 %, 64.2 %, and 50.0 % removal rates for naphthalene, phenanthrene, and pyrene after 24 h reaction, respectively. The superior total PAHs removal efficiency (60.6 %) was 3.6-4.7 times higher than that of other commercial peroxides (2Na2CO3•3H2O, CaO2, and H2O2). Mechanism analysis revealed that varieties of reactive oxygen species (ROS) can be generated by PPB through Fenton-like or non-Fenton routines, including H2O2, perborates species, O2•-, •OH, and 1O2. The sustainable generation of H2O2 reduced the disproportionation effect of H2O2 by 86 %, significantly improving the utilization rate. Moreover, sandbox experiments and actual contaminated soil remediation experiments verified the feasibility of PPB-CO in a real polluted site. This work provides a novel strategy for effectively soil remediation, highlighting the selection and application of new oxidants.

19.
Environ Sci Ecotechnol ; 21: 100418, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38638606

ABSTRACT

Urban surface water pollution poses significant threats to aquatic ecosystems and human health. Conventional nitrogen removal technologies used in urban surface water exhibit drawbacks such as high consumption of carbon sources, high sludge production, and focus on dissolved oxygen (DO) concentration while neglecting the impact of DO gradients. Here, we show an ecological filter walls (EFW) that removes pollutants from urban surface water. We utilized a polymer-based three-dimensional matrix to enhance water permeability, and emergent plants were integrated into the EFW to facilitate biofilm formation. We observed that varying aeration intensities within the EFW's aerobic zone resulted in distinct DO gradients, with an optimal DO control at 3.19 ± 0.2 mg L-1 achieving superior nitrogen removal efficiencies. Specifically, the removal efficiencies of total organic carbon, total nitrogen, ammonia, and nitrate were 79.4%, 81.3%, 99.6%, and 79.1%, respectively. Microbial community analysis under a 3 mg L-1 DO condition revealed a shift in microbial composition and abundance, with genera such as Dechloromonas, Acinetobacter, unclassified_f__Comamonadaceae, SM1A02 and Pseudomonas playing pivotal roles in carbon and nitrogen elimination. Notably, the EFW facilitated shortcut nitrification-denitrification processes, predominantly contributing to nitrogen removal. Considering low manufacturing cost, flexible application, small artificial trace, and good pollutant removal ability, EFW has promising potential as an innovative approach to urban surface water treatment.

20.
J Hazard Mater ; 471: 134407, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677122

ABSTRACT

Bioelectrochemical technologies based on electroactive biofilms (EAB) are promising for petroleum hydrocarbons (PHs) remediation as anode can serve as inexhaustible electron acceptor. However, the toxicity of PHs might inhibit the formation and function of EABs. Quorum sensing (QS) is ideal for boosting the performance of EABs, but its potential effects on reshaping microbial composition of EABs in treating PHs are poorly understood. Herein, two AHL signals, C4-HSL and C12-HSL, were employed to promote EABs for PHs degradation. The start-times of AHL-mediated EABs decreased by 18-26%, and maximum current densities increased by 28-63%. Meanwhile, the removal of total PHs increased to over 90%. AHLs facilitate thicker and more compact biofilm as well as higher viability. AHLs enhanced the electroactivity and direct electron transfer capability. The total abundance of PH-degrading bacteria increased from 52.05% to 75.33% and 72.02%, and the proportion of electroactive bacteria increased from 26.14% to 62.72% and 63.30% for MFC-C4 and MFC-C12. Microbial networks became more complex, aggregated, and stable with addition of AHLs. Furthermore, AHL-stimulated EABs showed higher abundance of genes related to PHs degradation. This work advanced our understanding of AHL-mediated QS in maintaining the stable function of microbial communities in the biodegradation process of petroleum hydrocarbons.


Subject(s)
Biodegradation, Environmental , Biofilms , Hydrocarbons , Petroleum , Quorum Sensing , Biofilms/drug effects , Petroleum/metabolism , Hydrocarbons/metabolism , Bacteria/metabolism , Bacteria/genetics , Electrochemical Techniques , Bioelectric Energy Sources
SELECTION OF CITATIONS
SEARCH DETAIL