Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 15(1): 5746, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982056

ABSTRACT

Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.


Subject(s)
Candida albicans , Candidiasis , Coinfection , Fungal Proteins , Staphylococcal Infections , Staphylococcus aureus , Candida albicans/metabolism , Candida albicans/pathogenicity , Candida albicans/genetics , Animals , Coinfection/microbiology , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/metabolism , Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Candidiasis/microbiology , Mice , Fungal Proteins/metabolism , Fungal Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Intraabdominal Infections/microbiology , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Quorum Sensing/genetics , Virulence , Gene Expression Regulation, Fungal , Disease Models, Animal , Trans-Activators/metabolism , Trans-Activators/genetics
3.
J Dent Child (Chic) ; 91(1): 3-9, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38671573

ABSTRACT

Purpose: To evaluate the current knowledge and usage of silver diammine fluoride (SDF) by general dentists in Louisiana and to identify primary barriers to the imple- mentation of SDF. Methods: A 16-item survey was emailed to 1719 Louisiana Dental Association members to identify factors influencing general dentists' usage of SDF. Results: Eighty-two surveys were completed with a response rate of 4.8 percent, with 69 identified as general dentists. Over half of the respondents were male (53.6%) and their practice experience ranged from less than one year to 48 years. The majority were solo owners (43.5%) while 7.3 percent had jobs in the corporate setting. Most agreed/strongly agreed that their knowledge of SDF was from either dental journals or online resources, while fewer stated they were taught about SDF (25%) or used SDF (8%) in dental school. The majority knew the advantages and off-label usage of SDF. However, only 40 percent recognized that SDF was officially approved for tooth hypersensitivity only. The most reported perceived barrier to SDF implementation was not learning about SDF in dental school (36%). Conclusion: There is a lack of understanding of SDF usage among Louisiana general dentists. The main reason for not incorporating SDF into their practice is the lack of training in their dental education.


Subject(s)
Fluorides, Topical , Practice Patterns, Dentists' , Silver Compounds , Humans , Louisiana , Fluorides, Topical/therapeutic use , Male , Silver Compounds/therapeutic use , Female , Surveys and Questionnaires , Practice Patterns, Dentists'/statistics & numerical data , Quaternary Ammonium Compounds/therapeutic use , General Practice, Dental , Adult , Middle Aged , Cariostatic Agents/therapeutic use , Dental Offices , Dentists/statistics & numerical data
4.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405692

ABSTRACT

Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.

5.
Infect Immun ; 92(3): e0035023, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38289125

ABSTRACT

Vulvovaginal candidiasis (VVC), caused by Candida albicans, is characterized by aberrant inflammation by polymorphonuclear neutrophils (PMNs) in the vaginal lumen. Data from the established murine model shows that despite potent antifungal properties, PMNs fail to clear C. albicans due to local heparan sulfate that inhibits the interaction between PMNs and C. albicans, resulting in chronic vaginal immunopathology. To understand the role of neutrophil extracellular traps (NETs) in defense against C. albicans at the vaginal mucosa, we investigated the NET-forming capacity of PMNs in chronic VVC-susceptible (CVVC-S/C3H) and -resistant (CVVC-R/CD-1) mouse strains. Immunofluorescence revealed the formation of NETs (release of DNA with PMN-derived antimicrobial proteins) in PMN-C. albicans cocultures using vaginal conditioned medium (VCM) generated from CVVC-R/CD-1 mice, similar to NET-inducing positive controls. Under these NETotic conditions, PMNs released high levels of double-stranded DNA bound with NET-associated proteins, concomitant with substantial C. albicans killing activity. In contrast, PMN-C. albicans cocultures in VCM from CVVC-S/C3H mice lacked NET formation together with reduced antifungal activity. Similar results were observed in vivo: active NET-C. albicans interaction followed by fungal clearance in inoculated CVVC-R/CD-1 mice, and sustained high vaginal fungal burden and no evidence of NETs in inoculated CVVC-S/C3H mice. Furthermore, the level of Ki67 expression, a putative NETotic PMN marker, was significantly reduced in vaginal lavage fluid from CVVC-S/C3H mice compared to CVVC-R/CD-1 mice. Finally, scanning electron microscopy revealed that PMNs in CVVC-R, but not CVVC-S, conditions exhibited NETs in direct contact with C. albicans hyphae in vitro and in vivo. These results suggest that VVC-associated immunopathology includes impaired NET-mediated antifungal activity.


Subject(s)
Candidiasis, Vulvovaginal , Extracellular Traps , Female , Humans , Animals , Mice , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/pharmacology , Disease Models, Animal , Mice, Inbred C3H , Candida albicans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL