Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(25): 17325-17333, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865257

ABSTRACT

Titanium-oxo clusters can undergo photochemical reactions under UV light, resulting in the reduction of the titanium-oxo core and oxidation of surface ligands. This is an important step in photocatalytic processes in light-absorbing Ti/O-based clusters, metal-organic frameworks, and (nano)material surfaces; however, studying the direct outcome of this photochemical process is challenging due to the fragility of the immediate photoproducts. In this report, titanium-oxo clusters [TiO(OiPr)(L)]n (n = 4, L = O2PPh2, or n = 6, L = O2CCH2tBu) undergo a two-electron photoredox reaction in the single-crystal state via an irreversible single-crystal to single-crystal (SC-SC) transformation initiated by a UV laser. The process is monitored by single crystal X-ray diffraction revealing the photoreduction of the cluster with coproduction of an (oxidized) acetone ligand, which is retained in the structure as a ligand to Ti(3+). The results demonstrate that photochemistry of inorganic molecules can be studied in the single crystal phase, allowing characterization of photoproducts which are unstable in the solution phase.

2.
J Synchrotron Radiat ; 31(Pt 4): 763-770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38819843

ABSTRACT

Beamline B21 at the Diamond Light Source synchrotron in the UK is a small-angle X-ray scattering (SAXS) beamline that specializes in high-throughput measurements via automated sample delivery systems. A system has been developed whereby a sample can be illuminated by a focused beam of light coincident with the X-ray beam. The system is compatible with the highly automated sample delivery system at the beamline and allows a beamline user to select a light source from a broad range of wavelengths across the UV and visible spectrum and to control the timing and duration of the light pulse with respect to the X-ray exposure of the SAXS measurement. The intensity of the light source has been characterized across the wavelength range enabling experiments where a quantitative measure of dose is important. Finally, the utility of the system is demonstrated via measurement of several light-responsive samples.

SELECTION OF CITATIONS
SEARCH DETAIL