Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transfus Med Hemother ; 47(5): 396-408, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33173458

ABSTRACT

BACKGROUND AND AIMS: Only little is known about blood groups other than ABO blood groups and Rhesus factors in Arabian countries and Iran. During the last years, increased migration to Central Europe has put a focus on the question how to guarantee blood supply for patients from these countries, particularly because hemoglobinopathies with the need of regular blood support are more frequent in patients from that region. Therefore, blood group allele frequencies should be determined in individuals from Arabian countries and Iran by molecular typing and compared to a German rare donor panel. METHODS: 1,111 samples including 800 individuals from Syria, 147 from Iran, 123 from the Arabian Peninsula, and 41 from Northern African countries were included in a MALDI-TOF MS assay to detect polymorphisms coding for Kk, Fy(a/b), Fynull, Cw, Jk(a/b), Jo(a+/a-), Lu(a/b), Lu(8/14), Ss, Do(a/b), Co(a/b), In(a/b), Js(a/b), Kp(a/b), and variant alleles RHCE*c.697C>G and RHCE *c.733C>G. Yt(a/b), S-s-U-, Velnull, Conull, and RHCE *c.667G>T were tested by PCR-SSP. RESULTS: Of the Arabian donors, 2% were homozygous for the FY *02.01N allele (Fynull), and 15.7% carried the heterozygous mutation. However, 0.8% of the German donors also carried 1 copy of the allele. 3.6% of all and 29.3% of Northern African donors were heterozygous for the RHCE *c.733C>G substitution, 0.4% of the Syrian probands were heterozygous for DO *01/DO *01.-05, a genotype that was lacking in German donors. Whereas the KEL *02.06 allele coding for the Js(a) phenotype was missing in Germans; 0.8% of the Syrian donors carried 1 copy of this allele. 1.8% of the Syrian but only 0.3% of the German donors were negative for YT *01. One donor from Northern Africa homo-zygously carried the GYPB *270+5g>t mutation, inducing the S-s-U+w phenotype, and in 2 German donors a GYPB *c.161G>A exchange, which induces the Mit+ phenotype, caused a GYPB *03 allele dropout in the MALDI assay. The overall failure rate of the Arabian panel was 0.4%. CONCLUSIONS: Some blood group alleles that are largely lacking in Europeans but had been described in African individuals are present in Arabian populations at a somewhat lower frequency. In single cases, it could be challenging to provide immunized Arabian patients with compatible blood.

2.
Transfus Med Hemother ; 45(5): 300-309, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30498408

ABSTRACT

BACKGROUND AND OBJECTIVE: Antibodies to human neutrophil antigens (HNAs) have been implicated in transfusion-related acute lung injury and allo- and autoimmune neutropenia. To date, five HNA systems are assigned, and during the last decades enormous efforts have been undertaken to identify the underlying genes and to characterize the antigens. This review of the literature will provide the current genetic, molecular and functional information on HNAs. RECENT FINDINGS: New information on alleles and antigens has been added to nearly each of the five HNA systems. HNA-1d has been added as the antithetical epitope to HNA-1c that is located on the glycoprotein encoded by FCGR3B*02 but not by FCGR3B. FCGR3B*04 and *05 now are included as new alleles. A CD177*787A>T substitution was demonstrated as the main reason for the HNA-2-negative phenotype on neutrophils. The target glycoprotein of HNA-3 antibodies could be identified as choline transporter-like protein 2 (CTL2) encoded by SLC44A2. The conformation sensitive epitope discriminates between arginine and glutamine at position 152 resulting in HNA-3a and HNA-3b. An additional Leu151Phe substitution can impair HNA-3a antibody binding. Recently an alloantibody against HNA-4b which discriminates from HNA-4a by an Arg61His exchange of the glycoprotein encoded by the ITGAM gene was reported in neonatal alloimmune neutropenia. An update of the current HNA nomenclature based on the new findings was provided in 2016 by the ISBT Granulocyte Immunobiology Working Party nomenclature subcommittee. CONCLUSIONS: The molecular basis of each of the five HNA antigen systems has been decoded during the past decades. This enables reliable molecular typing strategies, antibody detection and specification as well as development of new assays based on recombinant antigens. However, research on HNA alleles, antigens, and antibodies is not finally terminated and also in the future will add new findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...