Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
J Neurodev Disord ; 16(1): 23, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720286

BACKGROUND: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. METHODS: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. RESULTS: We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals. CONCLUSIONS: These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.


Brain , Functional Laterality , Magnetic Resonance Imaging , Humans , Male , Functional Laterality/physiology , Brain/physiopathology , Brain/diagnostic imaging , Adult , Young Adult , Cross-Sectional Studies , Adolescent , Autism Spectrum Disorder/physiopathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Autistic Disorder/physiopathology , Child , Language
2.
bioRxiv ; 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38405819

One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.

3.
Mol Autism ; 15(1): 3, 2024 01 17.
Article En | MEDLINE | ID: mdl-38229192

BACKGROUND: Autism spectrum disorder (henceforth autism) is a complex neurodevelopmental condition associated with differences in gray matter (GM) volume covariations, as reported in our previous study of the Longitudinal European Autism Project (LEAP) data. To make progress on the identification of potential neural markers and to validate the robustness of our previous findings, we aimed to replicate our results using data from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) autism working group. METHODS: We studied 781 autistic and 927 non-autistic individuals (6-30 years, IQ ≥ 50), across 37 sites. Voxel-based morphometry was used to quantify GM volume as before. Subsequently, we used spatial maps of the two autism-related independent components (ICs) previously identified in the LEAP sample as templates for regression analyses to separately estimate the ENIGMA-participant loadings to each of these two ICs. Between-group differences in participants' loadings on each component were examined, and we additionally investigated the relation between participant loadings and autistic behaviors within the autism group. RESULTS: The two components of interest, previously identified in the LEAP dataset, showed significant between-group differences upon regressions into the ENIGMA cohort. The associated brain patterns were consistent with those found in the initial identification study. The first IC was primarily associated with increased volumes of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and caudate in the autism group relative to the control group (ß = 0.129, p = 0.013). The second IC was related to increased volumes of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to non-autistic individuals (ß = 0.116, p = 0.024). However, when accounting for the site-by-group interaction effect, no significant main effect of the group can be identified (p > 0.590). We did not find significant univariate association between the brain measures and behavior in autism (p > 0.085). LIMITATIONS: The distributions of age, IQ, and sex between LEAP and ENIGMA are statistically different from each other. Owing to limited access to the behavioral data of the autism group, we were unable to further our understanding of the neural basis of behavioral dimensions of the sample. CONCLUSIONS: The current study is unable to fully replicate the autism-related brain patterns from LEAP in the ENIGMA cohort. The diverse group effects across ENIGMA sites demonstrate the challenges of generalizing the average findings of the GM covariation patterns to a large-scale cohort integrated retrospectively from multiple studies. Further analyses need to be conducted to gain additional insights into the generalizability of these two GM covariation patterns.


Autism Spectrum Disorder , Autistic Disorder , Humans , Gray Matter/diagnostic imaging , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
4.
Biol Psychiatry ; 95(2): 175-186, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37348802

BACKGROUND: Autism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in intrinsic (i.e., gray matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs. METHODS: Here, we examined intrinsic global and local wiring costs in the brain of 359 individuals with autism and 279 healthy control participants ages 6 to 30 years from the EU-AIMS LEAP (Longitudinal European Autism Project). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray matter. Vertexwise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allen Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings. RESULTS: Group differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal junction. The resulting neuroanatomical patterns were enriched for genes that had been previously implicated in the etiology of autism at genetic and transcriptomic levels. CONCLUSIONS: Based on intrinsic gray matter connectivity, the current study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches.


Autism Spectrum Disorder , White Matter , Humans , Gray Matter/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Magnetic Resonance Imaging/methods , Cerebral Cortex , Brain/diagnostic imaging , White Matter/diagnostic imaging , Genomics
5.
bioRxiv ; 2023 Dec 09.
Article En | MEDLINE | ID: mdl-38106130

The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.

6.
Mol Autism ; 14(1): 36, 2023 10 04.
Article En | MEDLINE | ID: mdl-37794485

BACKGROUND: Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modulated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring ADHD, and to (2) link these variances to putative genomic underpinnings. METHODS: We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model including main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modulates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings. RESULTS: In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects and the interaction were enriched for ASD-but not for ADHD-related genes. LIMITATIONS: Although we employed a multicenter design to overcome single-site recruitment limitations, our sample size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical setting. CONCLUSION: Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially mediated by atypical gene expression.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/complications , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/complications , Neuroanatomy , Brain/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/complications , Genomics
7.
bioRxiv ; 2023 Aug 29.
Article En | MEDLINE | ID: mdl-37693556

Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.

8.
Mol Psychiatry ; 28(10): 4331-4341, 2023 Oct.
Article En | MEDLINE | ID: mdl-37587246

Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.


Autism Spectrum Disorder , Autistic Disorder , Connectome , Humans , Magnetic Resonance Imaging , Brain , Functional Laterality/physiology , Brain Mapping
9.
Nat Neurosci ; 26(9): 1603-1612, 2023 09.
Article En | MEDLINE | ID: mdl-37604888

Environmental adversities constitute potent risk factors for psychiatric disorders. Evidence suggests the brain adapts to adversity, possibly in an adversity-type and region-specific manner. However, the long-term effects of adversity on brain structure and the association of individual neurobiological heterogeneity with behavior have yet to be elucidated. Here we estimated normative models of structural brain development based on a lifespan adversity profile in a longitudinal at-risk cohort aged 25 years (n = 169). This revealed widespread morphometric changes in the brain, with partially adversity-specific features. This pattern was replicated at the age of 33 years (n = 114) and in an independent sample at 22 years (n = 115). At the individual level, greater volume contractions relative to the model were predictive of future anxiety. We show a stable neurobiological signature of adversity that persists into adulthood and emphasize the importance of considering individual-level rather than group-level predictions to explain emerging psychopathology.


Longevity , Mental Disorders , Adult , Humans , Brain , Anxiety , Neurobiology
10.
Mol Autism ; 14(1): 32, 2023 08 31.
Article En | MEDLINE | ID: mdl-37653516

Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional organisational properties of brain regions. We aim to identify novel brain-organisation phenotypes of autism. We utilised multimodal MRI (T1-, diffusion-weighted and resting state functional), behavioural and clinical data from the EU AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non-autistic (n = 196) participants. Of these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were then integrated with Linked Independent Component Analysis. Linear mixed-effects models were used to evaluate the relationship between components and group while accounting for covariates and non-independence of participants with longitudinal data. Additional models were run to investigate associations with dimensional measures of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj = 0.02). This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal (uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism and warrant further investigation.


Autistic Disorder , Humans , Autistic Disorder/diagnostic imaging , Brain/diagnostic imaging , Gray Matter , Cerebral Cortex , Diffusion
12.
Transl Psychiatry ; 13(1): 270, 2023 07 27.
Article En | MEDLINE | ID: mdl-37500630

Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.


Autism Spectrum Disorder , Somatosensory Cortex , Humans , Somatosensory Cortex/diagnostic imaging , Brain , Emotions , Brain Mapping , Phenotype , Magnetic Resonance Imaging
13.
Mol Autism ; 14(1): 18, 2023 05 15.
Article En | MEDLINE | ID: mdl-37189195

BACKGROUND: The cerebellum contains more than 50% of all neurons in the brain and is involved in a broad range of cognitive functions, including social communication and social cognition. Inconsistent atypicalities in the cerebellum have been reported in individuals with autism compared to controls suggesting the limits of categorical case control comparisons. Alternatively, investigating how clinical dimensions are related to neuroanatomical features, in line with the Research Domain Criteria approach, might be more relevant. We hypothesized that the volume of the "cognitive" lobules of the cerebellum would be associated with social difficulties. METHODS: We analyzed structural MRI data from a large pediatric and transdiagnostic sample (Healthy Brain Network). We performed cerebellar parcellation with a well-validated automated segmentation pipeline (CERES). We studied how social communication abilities-assessed with the social component of the Social Responsiveness Scale (SRS)-were associated with the cerebellar structure, using linear mixed models and canonical correlation analysis. RESULTS: In 850 children and teenagers (mean age 10.8 ± 3 years; range 5-18 years), we found a significant association between the cerebellum, IQ and social communication performance in our canonical correlation model. LIMITATIONS: Cerebellar parcellation relies on anatomical boundaries, which does not overlap with functional anatomy. The SRS was originally designed to identify social impairments associated with autism spectrum disorders. CONCLUSION: Our results unravel a complex relationship between cerebellar structure, social performance and IQ and provide support for the involvement of the cerebellum in social and cognitive processes.


Cerebellum , Social Skills , Adolescent , Humans , Child , Cerebellum/diagnostic imaging , Brain , Cognition/physiology , Brain Mapping , Magnetic Resonance Imaging/methods
14.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Article En | MEDLINE | ID: mdl-36991132

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Autism Spectrum Disorder , Autistic Disorder , Humans , Follow-Up Studies , Neuroanatomy , Cross-Sectional Studies
15.
Biol Psychiatry ; 94(1): 29-39, 2023 07 01.
Article En | MEDLINE | ID: mdl-36925414

BACKGROUND: Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS: The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS: Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS: The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.


Autism Spectrum Disorder , Autistic Disorder , Connectome , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Connectome/methods , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods
16.
World Psychiatry ; 22(1): 129-149, 2023 Feb.
Article En | MEDLINE | ID: mdl-36640395

Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.

17.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Article En | MEDLINE | ID: mdl-36700346

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Reward , Magnetic Resonance Imaging/methods
18.
Am J Psychiatry ; 180(1): 50-64, 2023 01 01.
Article En | MEDLINE | ID: mdl-36415971

OBJECTIVE: The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS: Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS: Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS: The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.


Autism Spectrum Disorder , Autistic Disorder , Humans , Male , Female , Autistic Disorder/genetics , Neuroanatomy , Brain/diagnostic imaging , Cognition , Gene Expression/genetics , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology
19.
Article En | MEDLINE | ID: mdl-36075529

BACKGROUND: Although many studies have explored atypicalities in gray matter (GM) and white matter (WM) morphology of autism, most of them relied on unimodal analyses that did not benefit from the likelihood that different imaging modalities may reflect common neurobiology. We aimed to establish brain patterns of modalities that differentiate between individuals with and without autism and explore associations between these brain patterns and clinical measures in the autism group. METHODS: We studied 183 individuals with autism and 157 nonautistic individuals (age range, 6-30 years) in a large, deeply phenotyped autism dataset (EU-AIMS LEAP [European Autism Interventions-A Multicentre Study for Developing New Medications Longitudinal European Autism Project]). Linked independent component analysis was used to link all participants' GM volume and WM diffusion tensor images, and group comparisons of modality shared variances were examined. Subsequently, we performed univariate and multivariate brain-behavior correlation analyses to separately explore the relationships between brain patterns and clinical profiles. RESULTS: One multimodal pattern was significantly related to autism. This pattern was primarily associated with GM volume in bilateral insula and frontal, precentral and postcentral, cingulate, and caudate areas and co-occurred with altered WM features in the superior longitudinal fasciculus. The brain-behavior correlation analyses showed a significant multivariate association primarily between brain patterns that involved variation of WM and symptoms of restricted and repetitive behavior in the autism group. CONCLUSIONS: Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study the brain mechanisms that underpin autism and show that the complex clinical autism phenotype can be interpreted by brain covariation patterns that are spread across the brain involving both cortical and subcortical areas.


Autistic Disorder , White Matter , Humans , Child , Adolescent , Young Adult , Adult , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain , Gray Matter/diagnostic imaging
20.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Article En | MEDLINE | ID: mdl-35450543

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Aggression/psychology , Emotions , Attention Deficit and Disruptive Behavior Disorders , Brain Mapping
...