Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
JCO Precis Oncol ; 6: e2100413, 2022 07.
Article En | MEDLINE | ID: mdl-35797509

PURPOSE: In metastatic triple-negative breast cancer (mTNBC), consistent biomarkers of immune checkpoint inhibitor (ICI) therapy benefit remain elusive. We evaluated the immune, genomic, and transcriptomic landscape of mTNBC in patients treated with ICIs. METHODS: We identified 29 patients with mTNBC treated with pembrolizumab or atezolizumab, either alone (n = 9) or in combination with chemotherapy (n = 14) or targeted therapy (n = 6), who had tumor tissue and/or blood available before ICI therapy for whole-exome sequencing. RNA sequencing and CIBERSORTx-inferred immune population analyses were performed (n = 20). Immune cell populations and programmed death-ligand 1 expression were assessed using multiplexed immunofluorescence (n = 18). Clonal trajectories were evaluated via serial tumor/circulating tumor DNA whole-exome sequencing (n = 4). Association of biomarkers with progression-free survival and overall survival (OS) was assessed. RESULTS: Progression-free survival and OS were longer in patients with high programmed death-ligand 1 expression and tumor mutational burden. Patients with longer survival also had a higher relative inferred fraction of CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and follicular helper T cells and enrichment of inflammatory gene expression pathways. A mutational signature of defective repair of DNA damage by homologous recombination was enriched in patients with both shorter OS and primary resistance. Exploratory analysis of clonal evolution among four patients treated with programmed cell death protein 1 blockade and a tyrosine kinase inhibitor suggested that clonal stability post-treatment was associated with short time to progression. CONCLUSION: This study identified potential biomarkers of response to ICIs among patients with mTNBC: high tumor mutational burden; presence of CD8+, CD4 memory T cells, follicular helper T cells, and M1 macrophages; and inflammatory gene expression pathways. Pretreatment deficiencies in the homologous recombination DNA damage repair pathway and the absence of or minimal clonal evolution post-treatment may be associated with worse outcomes.


Triple Negative Breast Neoplasms , Biomarkers, Tumor/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Mutation , Progression-Free Survival , Triple Negative Breast Neoplasms/drug therapy
2.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Article En | MEDLINE | ID: mdl-35447074

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Triple Negative Breast Neoplasms , Humans , Immunosuppressive Agents/therapeutic use , Immunotherapy , Neoplasm Recurrence, Local , T-Lymphocytes/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
3.
Nature ; 596(7870): 119-125, 2021 08.
Article En | MEDLINE | ID: mdl-34290406

Interactions between T cell receptors (TCRs) and their cognate tumour antigens are central to antitumour immune responses1-3; however, the relationship between phenotypic characteristics and TCR properties is not well elucidated. Here we show, by linking the antigenic specificity of TCRs and the cellular phenotype of melanoma-infiltrating lymphocytes at single-cell resolution, that tumour specificity shapes the expression state of intratumoural CD8+ T cells. Non-tumour-reactive T cells were enriched for viral specificities and exhibited a non-exhausted memory phenotype, whereas melanoma-reactive lymphocytes predominantly displayed an exhausted state that encompassed diverse levels of differentiation but rarely acquired memory properties. These exhausted phenotypes were observed both among clonotypes specific for public overexpressed melanoma antigens (shared across different tumours) or personal neoantigens (specific for each tumour). The recognition of such tumour antigens was provided by TCRs with avidities inversely related to the abundance of cognate targets in melanoma cells and proportional to the binding affinity of peptide-human leukocyte antigen (HLA) complexes. The persistence of TCR clonotypes in peripheral blood was negatively affected by the level of intratumoural exhaustion, and increased in patients with a poor response to immune checkpoint blockade, consistent with chronic stimulation mediated by residual tumour antigens. By revealing how the quality and quantity of tumour antigens drive the features of T cell responses within the tumour microenvironment, we gain insights into the properties of the anti-melanoma TCR repertoire.


CD8-Positive T-Lymphocytes/immunology , Melanoma/immunology , Substrate Specificity/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Datasets as Topic , Gene Expression Regulation , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/blood , Phenotype , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Transcriptome/genetics , Tumor Microenvironment
4.
Genome Med ; 13(1): 89, 2021 05 20.
Article En | MEDLINE | ID: mdl-34016182

BACKGROUND: Circulating tumor DNA (ctDNA) offers minimally invasive means to repeatedly interrogate tumor genomes, providing opportunities to monitor clonal dynamics induced by metastasis and therapeutic selective pressures. In metastatic cancers, ctDNA profiling allows for simultaneous analysis of both local and distant sites of recurrence. Despite the promise of ctDNA sampling, its utility in real-time genetic monitoring remains largely unexplored. METHODS: In this exploratory analysis, we characterize high-frequency ctDNA sample series collected over narrow time frames from seven patients with metastatic triple-negative breast cancer, each undergoing treatment with Cabozantinib, a multi-tyrosine kinase inhibitor (NCT01738438, https://clinicaltrials.gov/ct2/show/NCT01738438 ). Applying orthogonal whole exome sequencing, ultra-low pass whole genome sequencing, and 396-gene targeted panel sequencing, we analyzed 42 plasma-derived ctDNA libraries, representing 4-8 samples per patient with 6-42 days between samples. Integrating tumor fraction, copy number, and somatic variant information, we model tumor clonal dynamics, predict neoantigens, and evaluate consistency of genomic information from orthogonal assays. RESULTS: We measured considerable variation in ctDNA tumor faction in each patient, often conflicting with RECIST imaging response metrics. In orthogonal sequencing, we found high concordance between targeted panel and whole exome sequencing in both variant detection and variant allele frequency estimation (specificity = 95.5%, VAF correlation, r = 0.949), Copy number remained generally stable, despite resolution limitations posed by low tumor fraction. Through modeling, we inferred and tracked distinct clonal populations specific to each patient and built phylogenetic trees revealing alterations in hallmark breast cancer drivers, including TP53, PIK3CA, CDK4, and PTEN. Our modeling revealed varied responses to therapy, with some individuals displaying stable clonal profiles, while others showed signs of substantial expansion or reduction in prevalence, with characteristic alterations of varied literature annotation in relation to the study drug. Finally, we predicted and tracked neoantigen-producing alterations across time, exposing translationally relevant detection patterns. CONCLUSIONS: Despite technical challenges arising from low tumor content, metastatic ctDNA monitoring can aid our understanding of response and progression, while minimizing patient risk and discomfort. In this study, we demonstrate the potential for high-frequency monitoring of evolving genomic features, providing an important step toward scalable, translational genomics for clinical decision making.


Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Circulating Tumor DNA , Clonal Evolution/genetics , Adult , Aged , Computational Biology/methods , DNA Copy Number Variations , Female , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy/methods , Middle Aged , Mutation , Neoplasm Staging , Exome Sequencing
5.
Cancer Cell ; 39(5): 632-648.e8, 2021 05 10.
Article En | MEDLINE | ID: mdl-33711273

The tumor immune microenvironment plays a critical role in cancer progression and response to immunotherapy in clear cell renal cell carcinoma (ccRCC), yet the composition and phenotypic states of immune cells in this tumor are incompletely characterized. We performed single-cell RNA and T cell receptor sequencing on 164,722 individual cells from tumor and adjacent non-tumor tissue in patients with ccRCC across disease stages: early, locally advanced, and advanced/metastatic. Terminally exhausted CD8+ T cells were enriched in metastatic disease and were restricted in T cell receptor diversity. Within the myeloid compartment, pro-inflammatory macrophages were decreased, and suppressive M2-like macrophages were increased in advanced disease. Terminally exhausted CD8+ T cells and M2-like macrophages co-occurred in advanced disease and expressed ligands and receptors that support T cell dysfunction and M2-like polarization. This immune dysfunction circuit is associated with a worse prognosis in external cohorts and identifies potentially targetable immune inhibitory pathways in ccRCC.


CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/immunology , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunotherapy/methods , Kidney Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/metabolism , Tumor Microenvironment/immunology
6.
Nat Commun ; 12(1): 808, 2021 02 05.
Article En | MEDLINE | ID: mdl-33547292

Sarcomatoid and rhabdoid (S/R) renal cell carcinoma (RCC) are highly aggressive tumors with limited molecular and clinical characterization. Emerging evidence suggests immune checkpoint inhibitors (ICI) are particularly effective for these tumors, although the biological basis for this property is largely unknown. Here, we evaluate multiple clinical trial and real-world cohorts of S/R RCC to characterize their molecular features, clinical outcomes, and immunologic characteristics. We find that S/R RCC tumors harbor distinctive molecular features that may account for their aggressive behavior, including BAP1 mutations, CDKN2A deletions, and increased expression of MYC transcriptional programs. We show that these tumors are highly responsive to ICI and that they exhibit an immune-inflamed phenotype characterized by immune activation, increased cytotoxic immune infiltration, upregulation of antigen presentation machinery genes, and PD-L1 expression. Our findings build on prior work and shed light on the molecular drivers of aggressivity and responsiveness to ICI of S/R RCC.


Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Renal Cell/immunology , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Proteins/immunology , Kidney Neoplasms/immunology , Rhabdoid Tumor/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/immunology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immune Checkpoint Proteins/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Mutation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/immunology , Retrospective Studies , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/genetics , Rhabdoid Tumor/mortality , Signal Transduction , Survival Analysis , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/immunology
7.
Nat Med ; 27(3): 515-525, 2021 03.
Article En | MEDLINE | ID: mdl-33479501

Personal neoantigen vaccines have been envisioned as an effective approach to induce, amplify and diversify antitumor T cell responses. To define the long-term effects of such a vaccine, we evaluated the clinical outcome and circulating immune responses of eight patients with surgically resected stage IIIB/C or IVM1a/b melanoma, at a median of almost 4 years after treatment with NeoVax, a long-peptide vaccine targeting up to 20 personal neoantigens per patient ( NCT01970358 ). All patients were alive and six were without evidence of active disease. We observed long-term persistence of neoantigen-specific T cell responses following vaccination, with ex vivo detection of neoantigen-specific T cells exhibiting a memory phenotype. We also found diversification of neoantigen-specific T cell clones over time, with emergence of multiple T cell receptor clonotypes exhibiting distinct functional avidities. Furthermore, we detected evidence of tumor infiltration by neoantigen-specific T cell clones after vaccination and epitope spreading, suggesting on-target vaccine-induced tumor cell killing. Personal neoantigen peptide vaccines thus induce T cell responses that persist over years and broaden the spectrum of tumor-specific cytotoxicity in patients with melanoma.


Antigens, Neoplasm/genetics , Cancer Vaccines/immunology , Epitopes/immunology , Immunologic Memory , Melanoma/immunology , Humans , Melanoma/pathology
8.
Sci Transl Med ; 12(561)2020 09 16.
Article En | MEDLINE | ID: mdl-32938797

Leukemic relapse remains a major barrier to successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aggressive hematologic malignancies. The basis for relapse of advanced lymphoid malignancies remains incompletely understood and may involve escape from the graft-versus-leukemia (GvL) effect. We hypothesized that for patients with chronic lymphocytic leukemia (CLL) treated with allo-HSCT, leukemic cell-intrinsic features influence transplant outcomes by directing the evolutionary trajectories of CLL cells. Integrated genetic, transcriptomic, and epigenetic analyses of CLL cells from 10 patients revealed that the clinical kinetics of post-HSCT relapse are shaped by distinct molecular dynamics. Early relapses after allo-HSCT exhibited notable genetic stability; single CLL cell transcriptional analysis demonstrated a cellular heterogeneity that was static over time. In contrast, CLL cells relapsing late after allo-HSCT displayed notable genetic evolution and evidence of neoantigen depletion, consistent with marked single-cell transcriptional shifts that were unique to each patient. We observed a greater rate of epigenetic change for late relapses not seen in early relapses or relapses after chemotherapy alone, suggesting that the selection pressures of the GvL bottleneck are unlike those imposed by chemotherapy. No selective advantage for human leukocyte antigen (HLA) loss was observed, even when present in pretransplant subpopulations. Gain of stem cell modules was a common signature associated with leukemia relapse regardless of posttransplant relapse kinetics. These data elucidate the biological pathways that underlie GvL resistance and posttransplant relapse.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Lymphocytic, Chronic, B-Cell , Graft vs Leukemia Effect , HLA Antigens , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Transplantation, Homologous
9.
Nat Med ; 26(6): 909-918, 2020 06.
Article En | MEDLINE | ID: mdl-32472114

PD-1 blockade has transformed the management of advanced clear cell renal cell carcinoma (ccRCC), but the drivers and resistors of the PD-1 response remain incompletely elucidated. Here, we analyzed 592 tumors from patients with advanced ccRCC enrolled in prospective clinical trials of treatment with PD-1 blockade by whole-exome and RNA sequencing, integrated with immunofluorescence analysis, to uncover the immunogenomic determinants of the therapeutic response. Although conventional genomic markers (such as tumor mutation burden and neoantigen load) and the degree of CD8+ T cell infiltration were not associated with clinical response, we discovered numerous chromosomal alterations associated with response or resistance to PD-1 blockade. These advanced ccRCC tumors were highly CD8+ T cell infiltrated, with only 27% having a non-infiltrated phenotype. Our analysis revealed that infiltrated tumors are depleted of favorable PBRM1 mutations and enriched for unfavorable chromosomal losses of 9p21.3, as compared with non-infiltrated tumors, demonstrating how the potential interplay of immunophenotypes with somatic alterations impacts therapeutic efficacy.


Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Nivolumab/therapeutic use , Adult , Aged , Aged, 80 and over , Antigen Presentation/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Chromosome Deletion , Chromosomes, Human, Pair 6 , Chromosomes, Human, Pair 9/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA-Binding Proteins/genetics , Female , Fluorescent Antibody Technique , Gene Deletion , Genomics , Histocompatibility Antigens Class II/genetics , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Mutation , PTEN Phosphohydrolase/genetics , Prognosis , Proteasome Endopeptidase Complex/genetics , Sequence Analysis, RNA , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Exome Sequencing
10.
Nat Protoc ; 14(8): 2571-2594, 2019 08.
Article En | MEDLINE | ID: mdl-31341290

RNase H-dependent PCR-enabled T-cell receptor sequencing (rhTCRseq) can be used to determine paired alpha/beta T-cell receptor (TCR) clonotypes in single cells or perform alpha and beta TCR repertoire analysis in bulk RNA samples. With the enhanced specificity of RNase H-dependent PCR (rhPCR), it achieves TCR-specific amplification and addition of dual-index barcodes in a single PCR step. For single cells, the protocol includes sorting of single cells into plates, generation of cDNA libraries, a TCR-specific amplification step, a second PCR on pooled sample to generate a sequencing library, and sequencing. In the bulk method, sorting and cDNA library steps are replaced with a reverse-transcriptase (RT) reaction that adds a unique molecular identifier (UMI) to each cDNA molecule to improve the accuracy of repertoire-frequency measurements. Compared to other methods for TCR sequencing, rhTCRseq has a streamlined workflow and the ability to analyze single cells in 384-well plates. Compared to TCR reconstruction from single-cell transcriptome sequencing data, it improves the success rate for obtaining paired alpha/beta information and ensures recovery of complete complementarity-determining region 3 (CDR3) sequences, a prerequisite for cloning/expression of discovered TCRs. Although it has lower throughput than droplet-based methods, rhTCRseq is well-suited to analysis of small sorted populations, especially when analysis of 96 or 384 single cells is sufficient to identify predominant T-cell clones. For single cells, sorting typically requires 2-4 h and can be performed days, or even months, before library construction and data processing, which takes ~4 d; the bulk RNA protocol takes ~3 d.


Polymerase Chain Reaction/methods , RNA, Messenger/genetics , Receptors, Antigen, T-Cell/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cells, Cultured , Cloning, Molecular , Humans , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Ribonuclease H/metabolism , T-Lymphocytes/chemistry , T-Lymphocytes/cytology
12.
Nat Genet ; 51(1): 30-35, 2019 01.
Article En | MEDLINE | ID: mdl-30455414

We used a deeply sequenced dataset of 910 individuals, all of African descent, to construct a set of DNA sequences that is present in these individuals but missing from the reference human genome. We aligned 1.19 trillion reads from the 910 individuals to the reference genome (GRCh38), collected all reads that failed to align, and assembled these reads into contiguous sequences (contigs). We then compared all contigs to one another to identify a set of unique sequences representing regions of the African pan-genome missing from the reference genome. Our analysis revealed 296,485,284 bp in 125,715 distinct contigs present in the populations of African descent, demonstrating that the African pan-genome contains ~10% more DNA than the current human reference genome. Although the functional significance of nearly all of this sequence is unknown, 387 of the novel contigs fall within 315 distinct protein-coding genes, and the rest appear to be intergenic.


Black People/genetics , Genome, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/methods
13.
BMC Bioinformatics ; 19(1): 32, 2018 02 05.
Article En | MEDLINE | ID: mdl-29402213

BACKGROUND: Genomic islands play an important role in microbial genome evolution, providing a mechanism for strains to adapt to new ecological conditions. A variety of computational methods, both genome-composition based and comparative, have been developed to identify them. Some of these methods are explicitly designed to work in single strains, while others make use of multiple strains. In general, existing methods do not identify islands in the context of the phylogeny in which they evolved. Even multiple strain approaches are best suited to identifying genomic islands that are present in one strain but absent in others. They do not automatically recognize islands which are shared between some strains in the clade or determine the branch on which these islands inserted within the phylogenetic tree. RESULTS: We have developed a software package, xenoGI, that identifies genomic islands and maps their origin within a clade of closely related bacteria, determining which branch they inserted on. It takes as input a set of sequenced genomes and a tree specifying their phylogenetic relationships. Making heavy use of synteny information, the package builds gene families in a species-tree-aware way, and then attempts to combine into islands those families whose members are adjacent and whose most recent common ancestor is shared. The package provides a variety of text-based analysis functions, as well as the ability to export genomic islands into formats suitable for viewing in a genome browser. We demonstrate the capabilities of the package with several examples from enteric bacteria, including an examination of the evolution of the acid fitness island in the genus Escherichia. In addition we use output from simulations and a set of known genomic islands from the literature to show that xenoGI can accurately identify genomic islands and place them on a phylogenetic tree. CONCLUSIONS: xenoGI is an effective tool for studying the history of genomic island insertions in a clade of microbes. It identifies genomic islands, and determines which branch they inserted on within the phylogenetic tree for the clade. Such information is valuable because it helps us understand the adaptive path that has produced living species.


Bacteria/genetics , Genomic Islands/genetics , Phylogeny , Software , Computer Simulation , Evolution, Molecular , Genome, Bacterial , Reproducibility of Results , Time Factors
...