Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Cell Biochem Funct ; 39(6): 754-762, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33913177

ABSTRACT

Sepsis induces several metabolic abnormalities, including hypoglycaemia in the most advanced stage of the disease, a risk factor for complications and death. Although hypoglycaemia can be caused by inhibition of hepatic gluconeogenesis, decreased and increased gluconeogenesis were reported in sepsis. Furthermore, gluconeogenesis from glycerol was not yet evaluated in this disease. The main purpose of this study was to investigate the gluconeogenesis from alanine, lactate, pyruvate and glycerol in rats with early (8 hours) and late (18 hours) sepsis. Parameters related to the characterization of sepsis were also evaluated. Sepsis was induced by cecal ligation and puncture and gluconeogenesis was assessed in liver perfusion. Rats with early and late sepsis showed increased lactataemia, depletion of liver glycogen and peripheral insulin resistance, characterizing the establishment of sepsis. Rats with early and late sepsis showed decreased gluconeogenesis from alanine, lactate and pyruvate. Interestingly, gluconeogenesis from glycerol, a precursor that enters in the pathway at a later step, subsequent to the entry of alanine, lactate and pyruvate, was maintained in rats with early and late sepsis. In conclusion, gluconeogenesis is decreased from alanine, lactate and pyruvate, but maintained from glycerol, in liver perfusion of rats with early and late sepsis. SIGNIFICANCE OF THE STUDY: The maintenance of gluconeogenesis from glycerol, but not from alanine, lactate and pyruvate, together with the liver glycogen depletion, points the glycerol as an important precursor for the maintenance of glycaemic homeostasis in sepsis. The findings open the possibility of further investigation on the administration of glycerol in the treatment of hypoglycaemia associated with more advanced sepsis.


Subject(s)
Alanine/metabolism , Lactic Acid/metabolism , Liver/metabolism , Pyruvic Acid/metabolism , Sepsis/metabolism , Animals , Gluconeogenesis , Glycerol/metabolism , Male , Perfusion , Rats , Rats, Wistar
2.
J Cell Biochem ; 120(7): 11068-11080, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30719751

ABSTRACT

Gluconeogenesis (GN) is increased in patients with cancer cachexia, but is reduced in liver perfusion of Walker-256 tumor-bearing cachectic rats (TB rats). The causes of these differences are unknown. We investigated the influence of circulating concentrations of lactate (NADH generator) and NADH on GN in perfused livers of TB rats. Lactate, at concentrations similar to those found on days 5 (3.0 mM), 8 (5.5 mM), and 12 (8.0 mM) of the tumor, prevented the reduction of GN from 2.0 mM lactate (lactatemia of healthy rat) in TB rats. NADH, 50 or 75 µM, but not 25 µM, increased GN from 2.0 mM lactate in TB rats to higher values than healthy rats. High concentrations of pyruvate (no NADH generator, 5.0 and 8.0 mM) did not prevent the reduction of GN from 2.0 mM pyruvate in TB rats. However, 50 or 75 µM NADH, but not 25 µM, increased GN from 2.0 mM pyruvate in TB rats to similar or higher values than healthy rats. High concentration of glutamine (NADH generator, 2.5 mM) or 50 µM NADH prevented the reduction of GN from 1 mM glutamine in TB rats. Intraperitoneal administration of pyruvate (1.0 mg/kg) or glutamine (0.5 mg/kg) similarly increased the glycemia of healthy and TB rats. In conclusion, high lactate concentration, similar to hyperlactatemia, prevented the reduction of GN in perfused livers of TB rats, an effect probably caused by the increased redox potential (NADH/NAD+ ). Thus, the decreased GN in livers from TB rats is due, at least in part, to the absence of simulation of in vivo hyperlactatemia in liver perfusion studies.

SELECTION OF CITATIONS
SEARCH DETAIL